These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 34478968)

  • 1. QSAR modelling of inhalation toxicity of diverse volatile organic molecules using no observed adverse effect concentration (NOAEC) as the endpoint.
    Nath A; De P; Roy K
    Chemosphere; 2022 Jan; 287(Pt 1):131954. PubMed ID: 34478968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of No Observed Adverse Effect Concentration for inhalation toxicity using Monte Carlo approach.
    Toropov AA; Toropova AP; Selvestrel G; Baderna D; Benfenati E
    SAR QSAR Environ Res; 2020 Dec; 31(12):1-12. PubMed ID: 33179981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis.
    Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E
    Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First report on development of quantitative interspecies structure-carcinogenicity relationship models and exploring discriminatory features for rodent carcinogenicity of diverse organic chemicals using OECD guidelines.
    Kar S; Roy K
    Chemosphere; 2012 Apr; 87(4):339-55. PubMed ID: 22225702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds.
    Khan K; Benfenati E; Roy K
    Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ecotoxicological QSAR modelling of organic chemicals against
    Khan K; Roy K
    SAR QSAR Environ Res; 2019 Sep; 30(9):665-681. PubMed ID: 31474156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the reliability of a QSAR model's predictions.
    He L; Jurs PC
    J Mol Graph Model; 2005 Jun; 23(6):503-23. PubMed ID: 15896992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative read-across structure-activity relationship (q-RASAR): A novel approach to estimate the subchronic oral safety (NOAEL) of diverse organic chemicals in rats.
    Ghosh S; Roy K
    Toxicology; 2024 Jun; 505():153824. PubMed ID: 38705560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promises and pitfalls of quantitative structure-activity relationship approaches for predicting metabolism and toxicity.
    Zvinavashe E; Murk AJ; Rietjens IM
    Chem Res Toxicol; 2008 Dec; 21(12):2229-36. PubMed ID: 19548346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles.
    Liu H; Papa E; Gramatica P
    Chem Res Toxicol; 2006 Nov; 19(11):1540-8. PubMed ID: 17112243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ecotoxicological QSAR modeling of the acute toxicity of organic compounds to the freshwater crustacean Thamnocephalus platyurus.
    Lavado GJ; Baderna D; Gadaleta D; Ultre M; Roy K; Benfenati E
    Chemosphere; 2021 Oct; 280():130652. PubMed ID: 34162072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of cross-validation strategies to avoid overestimation of performance of 2D-QSAR models for the prediction of aquatic toxicity of chemical mixtures.
    Chatterjee M; Roy K
    SAR QSAR Environ Res; 2022 Jun; 33(6):463-484. PubMed ID: 35638563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting chemical ocular toxicity using a combinatorial QSAR approach.
    Solimeo R; Zhang J; Kim M; Sedykh A; Zhu H
    Chem Res Toxicol; 2012 Dec; 25(12):2763-9. PubMed ID: 23148656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a QSAR model for acute toxicity.
    Pavan M; Netzeva TI; Worth AP
    SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the OECD QSAR toolbox automatic workflow for the prediction of the acute toxicity of organic chemicals to fathead minnow.
    Mombelli E; Pandard P
    Regul Toxicol Pharmacol; 2021 Jun; 122():104893. PubMed ID: 33587933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes.
    Basant N; Gupta S; Singh KP
    Regul Toxicol Pharmacol; 2016 Jun; 77():282-91. PubMed ID: 27018829
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 May; 5(3):773-787. PubMed ID: 30090388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemometric modeling of acute toxicity of diverse aromatic compounds against Rana japonica.
    Nath A; Roy K
    Toxicol In Vitro; 2022 Sep; 83():105427. PubMed ID: 35777580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.