These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34479117)

  • 1. In-vitro stress relaxation response of neonatal peripheral nerves.
    Majmudar T; Balasubramanian S; Magee R; Gonik B; Singh A
    J Biomech; 2021 Nov; 128():110702. PubMed ID: 34479117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Prestretch on Neonatal Peripheral Nerve: An
    Singh A; Majmudar T; Magee R; Gonik B; Balasubramanian S
    J Brachial Plex Peripher Nerve Inj; 2022 Jan; 17(1):e1-e9. PubMed ID: 35400085
    [No Abstract]   [Full Text] [Related]  

  • 3. An In Vitro Study to Investigate Biomechanical Responses of Peripheral Nerves in Hypoxic Neonatal Piglets.
    Singh A; Magee R; Balasubramanian S
    J Biomech Eng; 2021 Nov; 143(11):. PubMed ID: 34041534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stress relaxation of a peripheral nerve.
    Wall EJ; Kwan MK; Rydevik BL; Woo SL; Garfin SR
    J Hand Surg Am; 1991 Sep; 16(5):859-63. PubMed ID: 1940164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical Responses of Neonatal Brachial Plexus to Mechanical Stretch.
    Singh A; Shaji S; Delivoria-Papadopoulos M; Balasubramanian S
    J Brachial Plex Peripher Nerve Inj; 2018 Jan; 13(1):e8-e14. PubMed ID: 30210576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for In Vivo Biomechanical Testing on Brachial Plexus in Neonatal Piglets.
    Singh A; Magee R; Balasubramanian S
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid Stretch Injury to Peripheral Nerves: Biomechanical Results.
    Mahan MA; Yeoh S; Monson K; Light A
    Neurosurgery; 2019 Jul; 85(1):E137-E144. PubMed ID: 30383240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress relaxation of porcine tendon under simulated biological environment: experiment and modeling.
    Łagan SD; Liber-Kneć A
    Acta Bioeng Biomech; 2021; 23(1):59-68. PubMed ID: 34846046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Strain Rate on the Stress Relaxation of the Pig Dermis: A Hyper-Viscoelastic Approach.
    Dwivedi KK; Lakhani P; Kumar S; Kumar N
    J Biomech Eng; 2020 Sep; 142(9):. PubMed ID: 32005989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peripheral nerve injuries: A retrospective survey of 1124 cases.
    Kouyoumdjian JA; Graça CR; Ferreira VFM
    Neurol India; 2017; 65(3):551-555. PubMed ID: 28488619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo biomechanical responses of neonatal brachial plexus when subjected to stretch.
    Singh A; Orozco V; Balasubramanian S
    PLoS One; 2023; 18(8):e0290718. PubMed ID: 37647327
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of in vivo and ex vivo viscoelastic behavior of the spinal cord.
    Ramo NL; Shetye SS; Streijger F; Lee JHT; Troyer KL; Kwon BK; Cripton P; Puttlitz CM
    Acta Biomater; 2018 Mar; 68():78-89. PubMed ID: 29288084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.
    Chang CT; Chen YH; Lin CC; Ju MS
    J Biomech; 2015 Jul; 48(10):1982-7. PubMed ID: 25912662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain-dependent stress relaxation behavior of healthy right ventricular free wall.
    Liu W; Labus KM; Ahern M; LeBar K; Avazmohammadi R; Puttlitz CM; Wang Z
    Acta Biomater; 2022 Oct; 152():290-299. PubMed ID: 36030049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quasi-linear viscoelastic modeling of arterial wall for surgical simulation.
    Yang T; Chui CK; Yu RQ; Qin J; Chang SK
    Int J Comput Assist Radiol Surg; 2011 Nov; 6(6):829-38. PubMed ID: 21487834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory.
    Abramowitch SD; Woo SL
    J Biomech Eng; 2004 Feb; 126(1):92-7. PubMed ID: 15171134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical characterization of cadaveric brachial plexus microstructure.
    Perruisseau-Carrier AC; Marco Y; Fleury V; Brogan DM; Forli A; Bahlouli N
    Hand Surg Rehabil; 2024 Jul; ():101745. PubMed ID: 38960085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human amniotic epithelial cell transplantation for the repair of injured brachial plexus nerve: evaluation of nerve viscoelastic properties.
    Jin H; Yang Q; Ji F; Zhang YJ; Zhao Y; Luo M
    Neural Regen Res; 2015 Feb; 10(2):260-5. PubMed ID: 25883625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalization of exponential based hyperelastic to hyper-viscoelastic model for investigation of mechanical behavior of rate dependent materials.
    Narooei K; Arman M
    J Mech Behav Biomed Mater; 2018 Mar; 79():104-113. PubMed ID: 29289929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain.
    Estermann SJ; Pahr DH; Reisinger A
    J Mech Behav Biomed Mater; 2020 Dec; 112():104038. PubMed ID: 32889334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.