These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34479219)

  • 41. Grasping force and slip feedback through vibrotactile stimulation to be used in myoelectric forearm prostheses.
    Witteveen HJ; Rietman JS; Veltink PH
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2969-72. PubMed ID: 23366548
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Visuomotor behaviours when using a myoelectric prosthesis.
    Sobuh MM; Kenney LP; Galpin AJ; Thies SB; McLaughlin J; Kulkarni J; Kyberd P
    J Neuroeng Rehabil; 2014 Apr; 11():72. PubMed ID: 24758375
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Closed-Loop Control of a Multifunctional Myoelectric Prosthesis With Full-State Anatomically Congruent Electrotactile Feedback.
    Garenfeld MA; Strbac M; Jorgovanovic N; Dideriksen JL; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2090-2100. PubMed ID: 37058389
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Design and Functional Evaluation of a Dexterous Myoelectric Hand Prosthesis With Biomimetic Tactile Sensor.
    Zhang T; Jiang L; Liu H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1391-1399. PubMed ID: 29985148
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Alpha-band activity in parietofrontal cortex predicts future availability of vibrotactile feedback in prosthesis use.
    Johnson JT; de Mari D; Doherty H; Hammond FL; Wheaton LA
    Exp Brain Res; 2022 May; 240(5):1387-1398. PubMed ID: 35257195
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Stereovision and augmented reality for closed-loop control of grasping in hand prostheses.
    Markovic M; Dosen S; Cipriani C; Popovic D; Farina D
    J Neural Eng; 2014 Aug; 11(4):046001. PubMed ID: 24891493
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Feedback in myoelectric prostheses.
    Scott RN
    Clin Orthop Relat Res; 1990 Jul; (256):58-63. PubMed ID: 2194730
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An Empirical Evaluation of Force Feedback in Body-Powered Prostheses.
    Brown JD; Kunz TS; Gardner D; Shelley MK; Davis AJ; Gillespie RB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):215-226. PubMed ID: 27101614
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand.
    Raveh E; Friedman J; Portnoy S
    Assist Technol; 2018; 30(5):274-280. PubMed ID: 28628379
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Portable System for Home Use Enables Closed-Loop, Continuous Control of Multi-Degree-of-Freedom Bionic Arm.
    Paskett MD; Davis TS; Tully TN; Brinton MR; Clark GA
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6608-6612. PubMed ID: 34892623
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transfer of mode switching performance: from training to upper-limb prosthesis use.
    Heerschop A; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2021 May; 18(1):85. PubMed ID: 34022945
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Myoelectric hand prosthesis force control through servo motor current feedback.
    Sono TS; Menegaldo LL
    Artif Organs; 2009 Oct; 33(10):871-6. PubMed ID: 19681841
    [TBL] [Abstract][Full Text] [Related]  

  • 53. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.
    Brown JD; Paek A; Syed M; O'Malley MK; Shewokis PA; Contreras-Vidal JL; Davis AJ; Gillespie RB
    J Neuroeng Rehabil; 2015 Nov; 12():104. PubMed ID: 26602538
    [TBL] [Abstract][Full Text] [Related]  

  • 54. When Less Is More - Discrete Tactile Feedback Dominates Continuous Audio Biofeedback in the Integrated Percept While Controlling a Myoelectric Prosthetic Hand.
    Engels LF; Shehata AW; Scheme EJ; Sensinger JW; Cipriani C
    Front Neurosci; 2019; 13():578. PubMed ID: 31244596
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Intelligent multifunction myoelectric control of hand prostheses.
    Light CM; Chappell PH; Hudgins B; Engelhart K
    J Med Eng Technol; 2002; 26(4):139-46. PubMed ID: 12396328
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrotactile Feedback Improves Performance and Facilitates Learning in the Routine Grasping Task.
    Isaković M; Belić M; Štrbac M; Popović I; Došen S; Farina D; Keller T
    Eur J Transl Myol; 2016 Jun; 26(3):6069. PubMed ID: 27990236
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Long-Term Myoelectric Training with Delayed Feedback in the Home Environment.
    Stuttaford SA; Dupan SSG; Nazarpour K; Dyson M
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6437-6440. PubMed ID: 34892585
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Improving internal model strength and performance of prosthetic hands using augmented feedback.
    Shehata AW; Engels LF; Controzzi M; Cipriani C; Scheme EJ; Sensinger JW
    J Neuroeng Rehabil; 2018 Jul; 15(1):70. PubMed ID: 30064477
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preliminary Evaluation of the Effect of Mechanotactile Feedback Location on Myoelectric Prosthesis Performance Using a Sensorized Prosthetic Hand.
    Wells ED; Shehata AW; Dawson MR; Carey JP; Hebert JS
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632311
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A synergy-driven approach to a myoelectric hand.
    Godfrey SB; Ajoudani A; Catalano M; Grioli G; Bicchi A
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650377. PubMed ID: 24187196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.