BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34480315)

  • 1. Are electric vehicles cost competitive? A case study for China based on a lifecycle assessment.
    Yang L; Yu B; Malima G; Yang B; Chen H; Wei YM
    Environ Sci Pollut Res Int; 2022 Jan; 29(5):7793-7810. PubMed ID: 34480315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Life cycle water footprint of electric and internal combustion engine vehicles in China.
    Yang L; Chen H; Li H; Feng Y
    Environ Sci Pollut Res Int; 2023 Jul; 30(33):80442-80461. PubMed ID: 37300733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Will changes in charging and gasoline prices affect electric vehicle sales? Evidence from China.
    Jiang Z; Gao X
    Environ Sci Pollut Res Int; 2024 Jan; 31(2):3123-3133. PubMed ID: 38079044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A life-cycle comparison of alternative automobile fuels.
    MacLean HL; Lave LB; Lankey R; Joshi S
    J Air Waste Manag Assoc; 2000 Oct; 50(10):1769-79. PubMed ID: 11288305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental implication of electric vehicles in China.
    Huo H; Zhang Q; Wang MQ; Streets DG; He K
    Environ Sci Technol; 2010 Jul; 44(13):4856-61. PubMed ID: 20496930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Provincial Greenhouse Gas Emissions of Gasoline and Plug-in Electric Vehicles in China: Comparison from the Consumption-Based Electricity Perspective.
    Gan Y; Lu Z; He X; Hao C; Wang Y; Cai H; Wang M; Elgowainy A; Przesmitzki S; Bouchard J
    Environ Sci Technol; 2021 May; 55(10):6944-6956. PubMed ID: 33945267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China.
    Yu Y; Xu H; Cheng J; Wan F; Ju L; Liu Q; Liu J
    Sci Total Environ; 2022 Sep; 837():155626. PubMed ID: 35504393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Research on carbon reduction potential of electric vehicles for low-carbon transportation and its influencing factors].
    Shi XQ; Li XN; Yang JX
    Huan Jing Ke Xue; 2013 Jan; 34(1):385-94. PubMed ID: 23487966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cleaning up while Changing Gears: The Role of Battery Design, Fossil Fuel Power Plants, and Vehicle Policy for Reducing Emissions in the Transition to Electric Vehicles.
    Bruchon M; Chen ZL; Michalek J
    Environ Sci Technol; 2024 Feb; 58(8):3787-3799. PubMed ID: 38350416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fuelling the sustainable future: a comparative analysis between battery electrical vehicles (BEV) and fuel cell electrical vehicles (FCEV).
    Parikh A; Shah M; Prajapati M
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):57236-57252. PubMed ID: 37010685
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Factors influencing public support for banning gasoline vehicles in newly industrialized countries for the sake of environmental improvement: a case study of China.
    Dong F; Li K; Li Y; Liu Y; Zheng L
    Environ Sci Pollut Res Int; 2022 Jun; 29(29):43942-43954. PubMed ID: 35122648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Comparative Study on the Routing Problem of Electric and Fuel Vehicles Considering Carbon Trading.
    Liao W; Liu L; Fu J
    Int J Environ Res Public Health; 2019 Aug; 16(17):. PubMed ID: 31461949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Private versus Shared, Automated Electric Vehicles for U.S. Personal Mobility: Energy Use, Greenhouse Gas Emissions, Grid Integration, and Cost Impacts.
    Sheppard CJR; Jenn AT; Greenblatt JB; Bauer GS; Gerke BF
    Environ Sci Technol; 2021 Mar; 55(5):3229-3239. PubMed ID: 33566604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to reduce the greenhouse gas emissions and air pollution caused by light and heavy duty vehicles with battery-electric, fuel cell-electric and catenary trucks.
    Breuer JL; Samsun RC; Stolten D; Peters R
    Environ Int; 2021 Jul; 152():106474. PubMed ID: 33711760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle air emissions impacts and ownership costs of light-duty vehicles using natural gas as a primary energy source.
    Luk JM; Saville BA; MacLean HL
    Environ Sci Technol; 2015 Apr; 49(8):5151-60. PubMed ID: 25825338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric vehicles in China: emissions and health impacts.
    Ji S; Cherry CR; J Bechle M; Wu Y; Marshall JD
    Environ Sci Technol; 2012 Feb; 46(4):2018-24. PubMed ID: 22201325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of ethanol blended fuels for gasoline vehicles in China: Fuel economy, regulated gaseous pollutants and particulate matter.
    Wu X; Zhang S; Guo X; Yang Z; Liu J; He L; Zheng X; Han L; Liu H; Wu Y
    Environ Pollut; 2019 Oct; 253():731-740. PubMed ID: 31336351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Climate and environmental effects of electric vehicles versus compressed natural gas vehicles in China: a life-cycle analysis at provincial level.
    Huo H; Zhang Q; Liu F; He K
    Environ Sci Technol; 2013 Feb; 47(3):1711-8. PubMed ID: 23276251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An extensive review on hybrid electric vehicles powered by fuel cell-enabled hybrid energy storage system.
    Shekhawat M; Bansal HO
    Environ Sci Pollut Res Int; 2023 Dec; 30(57):119750-119771. PubMed ID: 37973779
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.
    Luk JM; Kim HC; De Kleine R; Wallington TJ; MacLean HL
    Environ Sci Technol; 2017 Aug; 51(15):8215-8228. PubMed ID: 28714678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.