BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34480402)

  • 21. Age matters: Developmental stage of Danio rerio larvae influences photomotor response thresholds to diazinion or diphenhydramine.
    Kristofco LA; Cruz LC; Haddad SP; Behra ML; Chambliss CK; Brooks BW
    Aquat Toxicol; 2016 Jan; 170():344-354. PubMed ID: 26431593
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Live imaging of Aiptasia larvae, a model system for coral and anemone bleaching, using a simple microfluidic device.
    Van Treuren W; Brower KK; Labanieh L; Hunt D; Lensch S; Cruz B; Cartwright HN; Tran C; Fordyce PM
    Sci Rep; 2019 Jun; 9(1):9275. PubMed ID: 31239506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated Lab-on-a-Chip Technology for Fish Embryo Toxicity Tests Performed under Continuous Microperfusion (μFET).
    Zhu F; Wigh A; Friedrich T; Devaux A; Bony S; Nugegoda D; Kaslin J; Wlodkowic D
    Environ Sci Technol; 2015 Dec; 49(24):14570-8. PubMed ID: 26506399
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Response of zebrafish larvae to mild electrical stimuli: A 96-well setup for behavioural screening.
    Steenbergen PJ
    J Neurosci Methods; 2018 May; 301():52-61. PubMed ID: 29522780
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advanced continuous-flow microfluidic device for parallel screening of crystal polymorphs, morphology, and kinetics at controlled supersaturation.
    Coliaie P; Kelkar MS; Langston M; Liu C; Nazemifard N; Patience D; Skliar D; Nere NK; Singh MR
    Lab Chip; 2021 Jun; 21(12):2333-2342. PubMed ID: 34096561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow patterns of larval fish: undulatory swimming in the intermediate flow regime.
    Müller UK; van den Boogaart JG; van Leeuwen JL
    J Exp Biol; 2008 Jan; 211(Pt 2):196-205. PubMed ID: 18165247
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tools for automating the imaging of zebrafish larvae.
    Pulak R
    Methods; 2016 Mar; 96():118-126. PubMed ID: 26631716
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Behavioral Space of Zebrafish Locomotion and Its Neural Network Analog.
    Girdhar K; Gruebele M; Chemla YR
    PLoS One; 2015; 10(7):e0128668. PubMed ID: 26132396
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A noninvasive light driven technique integrated microfluidics for zebrafish larvae transportation.
    Mani K; Hsieh YC; Panigrahi B; Chen CY
    Biomicrofluidics; 2018 Mar; 12(2):021101. PubMed ID: 30867853
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NeuroChip: a microfluidic electrophysiological device for genetic and chemical biology screening of Caenorhabditis elegans adult and larvae.
    Hu C; Dillon J; Kearn J; Murray C; O'Connor V; Holden-Dye L; Morgan H
    PLoS One; 2013; 8(5):e64297. PubMed ID: 23717588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid development and optimization of paper microfluidic designs using software automation.
    Potter J; Brisk P; Grover WH
    Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. OpenSource lab-on-a-chip physiometer for accelerated zebrafish embryo biotests.
    Akagi J; Hall CJ; Crosier KE; Cooper JM; Crosier PS; Wlodkowic D
    Curr Protoc Cytom; 2014 Jan; 67():9.44.1-9.44.16. PubMed ID: 24510773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A microfluidic device to study electrotaxis and dopaminergic system of zebrafish larvae.
    Peimani AR; Zoidl G; Rezai P
    Biomicrofluidics; 2018 Jan; 12(1):014113. PubMed ID: 29464011
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Designing Microfluidic Devices for Studying Cellular Responses Under Single or Coexisting Chemical/Electrical/Shear Stress Stimuli.
    Chou TY; Sun YS; Hou HS; Wu SY; Zhu Y; Cheng JY; Lo KY
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27584698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic Technologies for High Throughput Screening Through Sorting and On-Chip Culture of
    Midkiff D; San-Miguel A
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31775328
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A microfluidic device for efficient chemical testing using Caenorhabditis elegans.
    Song P; Zhang W; Sobolevski A; Bernard K; Hekimi S; Liu X
    Biomed Microdevices; 2015 Apr; 17(2):38. PubMed ID: 25744157
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Systematic screening of behavioral responses in two zebrafish strains.
    Vignet C; Bégout ML; Péan S; Lyphout L; Leguay D; Cousin X
    Zebrafish; 2013 Sep; 10(3):365-75. PubMed ID: 23738739
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Impairment of motor but not anxiety-like behavior caused by the increase of dopamine during development is sustained in zebrafish larvae at later stages.
    de Souza Lima ACM; de Alvarenga KAF; Codo BC; Sacramento EK; Rosa DVF; Souza RP; Romano-Silva MA; Souza BR
    Int J Dev Neurosci; 2020 Apr; 80(2):106-122. PubMed ID: 31990423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microfluidic devices for imaging neurological response of Drosophila melanogaster larva to auditory stimulus.
    Ghaemi R; Rezai P; Iyengar BG; Selvaganapathy PR
    Lab Chip; 2015 Feb; 15(4):1116-22. PubMed ID: 25536889
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors.
    Wlodarczyk KL; MacPherson WN; Hand DP; Maroto-Valer MM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.