These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 34480798)

  • 1. New approaches to improve crop tolerance to biotic and abiotic stresses.
    González Guzmán M; Cellini F; Fotopoulos V; Balestrini R; Arbona V
    Physiol Plant; 2022 Jan; 174(1):e13547. PubMed ID: 34480798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing climate-resilient crops: improving plant tolerance to stress combination.
    Rivero RM; Mittler R; Blumwald E; Zandalinas SI
    Plant J; 2022 Jan; 109(2):373-389. PubMed ID: 34482588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture.
    Yang Z; Cao Y; Shi Y; Qin F; Jiang C; Yang S
    Mol Plant; 2023 Oct; 16(10):1496-1517. PubMed ID: 37464740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change.
    KhokharVoytas A; Shahbaz M; Maqsood MF; Zulfiqar U; Naz N; Iqbal UZ; Sara M; Aqeel M; Khalid N; Noman A; Zulfiqar F; Al Syaad KM; AlShaqhaa MA
    Funct Integr Genomics; 2023 Aug; 23(3):283. PubMed ID: 37642792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability.
    Phour M; Sindhu SS
    Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets.
    Numan M; Serba DD; Ligaba-Osena A
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops.
    Villalobos-López MA; Arroyo-Becerra A; Quintero-Jiménez A; Iturriaga G
    Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional phenomics for improved climate resilience in Nordic agriculture.
    Roitsch T; Himanen K; Chawade A; Jaakola L; Nehe A; Alexandersson E
    J Exp Bot; 2022 Sep; 73(15):5111-5127. PubMed ID: 35727101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trichoderma for climate resilient agriculture.
    Kashyap PL; Rai P; Srivastava AK; Kumar S
    World J Microbiol Biotechnol; 2017 Aug; 33(8):155. PubMed ID: 28695465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox Regulation by Priming Agents Toward a Sustainable Agriculture.
    Tripathi DK; Bhat JA; Antoniou C; Kandhol N; Singh VP; Fernie AR; Fotopoulos V
    Plant Cell Physiol; 2024 Jul; 65(7):1087-1102. PubMed ID: 38591871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developing naturally stress-resistant crops for a sustainable agriculture.
    Zhang H; Li Y; Zhu JK
    Nat Plants; 2018 Dec; 4(12):989-996. PubMed ID: 30478360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses.
    Abdellatef E; Kamal NM; Tsujimoto H
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation.
    Zia R; Nawaz MS; Siddique MJ; Hakim S; Imran A
    Microbiol Res; 2021 Jan; 242():126626. PubMed ID: 33189069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular Genetic Approaches for Environmental Stress Tolerant Crop Plants: Progress and Prospects.
    Kaur R; Kumar Bhunia R; Ghosh AK
    Recent Pat Biotechnol; 2016; 10(1):12-29. PubMed ID: 27494733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorghum mitigates climate variability and change on crop yield and quality.
    Chadalavada K; Kumari BDR; Kumar TS
    Planta; 2021 Apr; 253(5):113. PubMed ID: 33928417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nexus on climate change: agriculture and possible solution to cope future climate change stresses.
    Shahzad A; Ullah S; Dar AA; Sardar MF; Mehmood T; Tufail MA; Shakoor A; Haris M
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14211-14232. PubMed ID: 33515149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crop breeding for a changing climate in the Pannonian region: towards integration of modern phenotyping tools.
    Kondić-Špika A; Mikić S; Mirosavljević M; Trkulja D; Marjanović Jeromela A; Rajković D; Radanović A; Cvejić S; Glogovac S; Dodig D; Božinović S; Šatović Z; Lazarević B; Šimić D; Novoselović D; Vass I; Pauk J; Miladinović D
    J Exp Bot; 2022 Sep; 73(15):5089-5110. PubMed ID: 35536688
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agricultural biotechnology for crop improvement in a variable climate: hope or hype?
    Varshney RK; Bansal KC; Aggarwal PK; Datta SK; Craufurd PQ
    Trends Plant Sci; 2011 Jul; 16(7):363-71. PubMed ID: 21497543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.