These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 34480798)

  • 21. Root-Related Genes in Crops and Their Application under Drought Stress Resistance-A Review.
    Qin T; Kazim A; Wang Y; Richard D; Yao P; Bi Z; Liu Y; Sun C; Bai J
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232779
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture.
    Rai S; Omar AF; Rehan M; Al-Turki A; Sagar A; Ilyas N; Sayyed RZ; Hasanuzzaman M
    Planta; 2022 Dec; 257(2):27. PubMed ID: 36583789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Abiotic Stress and Belowground Microbiome: The Potential of Omics Approaches.
    Sandrini M; Nerva L; Sillo F; Balestrini R; Chitarra W; Zampieri E
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increasing yield on dry fields: molecular pathways with growing potential.
    Tenorio Berrío R; Nelissen H; Inzé D; Dubois M
    Plant J; 2022 Jan; 109(2):323-341. PubMed ID: 34695266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimistic contributions of plant growth-promoting bacteria for sustainable agriculture and climate stress alleviation.
    Cao M; Narayanan M; Shi X; Chen X; Li Z; Ma Y
    Environ Res; 2023 Jan; 217():114924. PubMed ID: 36471556
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineering Climate-Change-Resilient Crops: New Tools and Approaches.
    Shahinnia F; Carrillo N; Hajirezaei MR
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Network Candidate Genes in Breeding for Drought Tolerant Crops.
    Krannich CT; Maletzki L; Kurowsky C; Horn R
    Int J Mol Sci; 2015 Jul; 16(7):16378-400. PubMed ID: 26193269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants.
    Etesami H; Jeong BR
    Ecotoxicol Environ Saf; 2018 Jan; 147():881-896. PubMed ID: 28968941
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing drought tolerance in C(4) crops.
    Lopes MS; Araus JL; van Heerden PD; Foyer CH
    J Exp Bot; 2011 May; 62(9):3135-53. PubMed ID: 21511912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR-Cas9-based genetic engineering for crop improvement under drought stress.
    Sami A; Xue Z; Tazein S; Arshad A; He Zhu Z; Ping Chen Y; Hong Y; Tian Zhu X; Jin Zhou K
    Bioengineered; 2021 Dec; 12(1):5814-5829. PubMed ID: 34506262
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rewilding crops for climate resilience: economic analysis and de novo domestication strategies.
    Razzaq A; Wani SH; Saleem F; Yu M; Zhou M; Shabala S
    J Exp Bot; 2021 Sep; 72(18):6123-6139. PubMed ID: 34114599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Is Endophytic Colonization of Host Plants a Method of Alleviating Drought Stress? Conceptualizing the Hidden World of Endophytes.
    Byregowda R; Prasad SR; Oelmüller R; Nataraja KN; Prasanna Kumar MK
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012460
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climate resilient crops for improving global food security and safety.
    Dhankher OP; Foyer CH
    Plant Cell Environ; 2018 May; 41(5):877-884. PubMed ID: 29663504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Surviving a Double-Edged Sword: Response of Horticultural Crops to Multiple Abiotic Stressors.
    Yan W; Sharif R; Sohail H; Zhu Y; Chen X; Xu X
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants.
    Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B
    Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genome Editing for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses.
    Hamdan MF; Karlson CKS; Teoh EY; Lau SE; Tan BC
    Plants (Basel); 2022 Oct; 11(19):. PubMed ID: 36235491
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Harnessing Crop Wild Diversity for Climate Change Adaptation.
    Cortés AJ; López-Hernández F
    Genes (Basel); 2021 May; 12(5):. PubMed ID: 34065368
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants.
    Manna M; Thakur T; Chirom O; Mandlik R; Deshmukh R; Salvi P
    Physiol Plant; 2021 Jun; 172(2):847-868. PubMed ID: 33180329
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fungal Endophytes to Combat Biotic and Abiotic Stresses for Climate-Smart and Sustainable Agriculture.
    Verma A; Shameem N; Jatav HS; Sathyanarayana E; Parray JA; Poczai P; Sayyed RZ
    Front Plant Sci; 2022; 13():953836. PubMed ID: 35865289
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metallic and non-metallic nanoparticles from plant, animal, and fisheries wastes: potential and valorization for application in agriculture.
    Krishnani KK; Boddu VM; Chadha NK; Chakraborty P; Kumar J; Krishna G; Pathak H
    Environ Sci Pollut Res Int; 2022 Nov; 29(54):81130-81165. PubMed ID: 36203045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.