These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 34480798)

  • 41. Developing drought-smart, ready-to-grow future crops.
    Raza A; Mubarik MS; Sharif R; Habib M; Jabeen W; Zhang C; Chen H; Chen ZH; Siddique KHM; Zhuang W; Varshney RK
    Plant Genome; 2023 Mar; 16(1):e20279. PubMed ID: 36366733
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synergism: biocontrol agents and biostimulants in reducing abiotic and biotic stresses in crop.
    Anuar MSK; Hashim AM; Ho CL; Wong MY; Sundram S; Saidi NB; Yusof MT
    World J Microbiol Biotechnol; 2023 Mar; 39(5):123. PubMed ID: 36934342
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Facing climate change: plant stress mitigation strategies in agriculture.
    Terán F; Vives-Peris V; Gómez-Cadenas A; Pérez-Clemente RM
    Physiol Plant; 2024; 176(4):e14484. PubMed ID: 39157905
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond.
    Del Buono D
    Sci Total Environ; 2021 Jan; 751():141763. PubMed ID: 32889471
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing.
    Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A
    J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Harnessing rhizosphere microbiomes for drought-resilient crop production.
    de Vries FT; Griffiths RI; Knight CG; Nicolitch O; Williams A
    Science; 2020 Apr; 368(6488):270-274. PubMed ID: 32299947
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Harnessing the potential of copper-based nanoparticles in mitigating abiotic and biotic stresses in crops.
    Kaleem Z; Xu W; Ulhassan Z; Shahbaz H; He D; Naeem S; Ali S; Shah AM; Sheteiwy MS; Zhou W
    Environ Sci Pollut Res Int; 2024 Oct; 31(50):59727-59748. PubMed ID: 39373837
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Editorial: plant-microbial symbiosis toward sustainable food security.
    Campos-Avelar I; Montoya-Martínez AC; Parra-Cota FI; de Los Santos-Villalobos S
    Plant Signal Behav; 2024 Dec; 19(1):2298054. PubMed ID: 38183219
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Beat the stress: breeding for climate resilience in maize for the tropical rainfed environments.
    Prasanna BM; Cairns JE; Zaidi PH; Beyene Y; Makumbi D; Gowda M; Magorokosho C; Zaman-Allah M; Olsen M; Das A; Worku M; Gethi J; Vivek BS; Nair SK; Rashid Z; Vinayan MT; Issa AB; San Vicente F; Dhliwayo T; Zhang X
    Theor Appl Genet; 2021 Jun; 134(6):1729-1752. PubMed ID: 33594449
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Challenges and perspectives to improve crop drought and salinity tolerance.
    Cominelli E; Conti L; Tonelli C; Galbiati M
    N Biotechnol; 2013 May; 30(4):355-61. PubMed ID: 23165101
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crop adaptation to climate change as a consequence of long-term breeding.
    Snowdon RJ; Wittkop B; Chen TW; Stahl A
    Theor Appl Genet; 2021 Jun; 134(6):1613-1623. PubMed ID: 33221941
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The battle of crops against drought: Genetic dissection and improvement.
    Yang Z; Qin F
    J Integr Plant Biol; 2023 Feb; 65(2):496-525. PubMed ID: 36639908
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security.
    Fiaz S; Ahmar S; Saeed S; Riaz A; Mora-Poblete F; Jung KH
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070430
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Amelioration of plant responses to drought under elevated CO
    Sekhar KM; Kota VR; Reddy TP; Rao KV; Reddy AR
    Photosynth Res; 2021 Dec; 150(1-3):21-40. PubMed ID: 32632534
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops.
    Mir RR; Zaman-Allah M; Sreenivasulu N; Trethowan R; Varshney RK
    Theor Appl Genet; 2012 Aug; 125(4):625-45. PubMed ID: 22696006
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Application of RNAi technology: a novel approach to navigate abiotic stresses.
    Ullah I; Kamel EAR; Shah ST; Basit A; Mohamed HI; Sajid M
    Mol Biol Rep; 2022 Nov; 49(11):10975-10993. PubMed ID: 36057876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance.
    Mills G; Sharps K; Simpson D; Pleijel H; Frei M; Burkey K; Emberson L; Uddling J; Broberg M; Feng Z; Kobayashi K; Agrawal M
    Glob Chang Biol; 2018 Oct; 24(10):4869-4893. PubMed ID: 30084165
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biostimulants and environmental stress mitigation in crops: A novel and emerging approach for agricultural sustainability under climate change.
    Mandal S; Anand U; López-Bucio J; Radha ; Kumar M; Lal MK; Tiwari RK; Dey A
    Environ Res; 2023 Sep; 233():116357. PubMed ID: 37295582
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Targeting carbon for crop yield and drought resilience.
    Griffiths CA; Paul MJ
    J Sci Food Agric; 2017 Nov; 97(14):4663-4671. PubMed ID: 28653336
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Plant growth-promoting rhizobacteria: Salt stress alleviators to improve crop productivity for sustainable agriculture development.
    Kumawat KC; Sharma B; Nagpal S; Kumar A; Tiwari S; Nair RM
    Front Plant Sci; 2022; 13():1101862. PubMed ID: 36714780
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.