These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34480986)

  • 1. Voltage Clamp Errors During Estimation of Concurrent Excitatory and Inhibitory Synaptic Input to Neurons with Dendrites.
    To MS; Honnuraiah S; Stuart GJ
    Neuroscience; 2022 May; 489():98-110. PubMed ID: 34480986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imperfect space clamp permits electrotonic interactions between inhibitory and excitatory synaptic conductances, distorting voltage clamp recordings.
    Poleg-Polsky A; Diamond JS
    PLoS One; 2011 Apr; 6(4):e19463. PubMed ID: 21559357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage- and space-clamp errors associated with the measurement of electrotonically remote synaptic events.
    Spruston N; Jaffe DB; Williams SH; Johnston D
    J Neurophysiol; 1993 Aug; 70(2):781-802. PubMed ID: 8410172
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of effective synaptic conductances using somatic voltage clamp.
    Li S; Liu N; Yao L; Zhang X; Zhou D; Cai D
    PLoS Comput Biol; 2019 Mar; 15(3):e1006871. PubMed ID: 30835719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic modification of dendritic cable properties and synaptic transmission by voltage-gated potassium channels.
    Wilson CJ
    J Comput Neurosci; 1995 Jun; 2(2):91-115. PubMed ID: 8521285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct measurement of somatic voltage clamp errors in central neurons.
    Williams SR; Mitchell SJ
    Nat Neurosci; 2008 Jul; 11(7):790-8. PubMed ID: 18552844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer simulations of voltage clamping retinal ganglion cells through whole-cell electrodes in the soma.
    Velte TJ; Miller RF
    J Neurophysiol; 1996 May; 75(5):2129-43. PubMed ID: 8734609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model of NMDA receptor-mediated activity in dendrites of hippocampal CA1 pyramidal neurons.
    Pongrácz F; Poolos NP; Kocsis JD; Shepherd GM
    J Neurophysiol; 1992 Dec; 68(6):2248-59. PubMed ID: 1337105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances.
    Traub RD; Wong RK; Miles R; Michelson H
    J Neurophysiol; 1991 Aug; 66(2):635-50. PubMed ID: 1663538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extending cable theory to heterogeneous dendrites.
    Meunier C; Lamotte d'Incamps B
    Neural Comput; 2008 Jul; 20(7):1732-75. PubMed ID: 18254702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMDA-induced dendritic oscillations during a soma voltage clamp of chick spinal neurons.
    Moore LE; Chub N; Tabak J; O'Donovan M
    J Neurosci; 1999 Oct; 19(19):8271-80. PubMed ID: 10493728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of active conductance distribution over dendrites on the synaptic integration in an identified nonspiking interneuron.
    Takashima A; Takahata M
    PLoS One; 2008 May; 3(5):e2217. PubMed ID: 18493322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effects of Realistic Synaptic Distribution and 3D Geometry on Signal Integration and Extracellular Field Generation of Hippocampal Pyramidal Cells and Inhibitory Neurons.
    Gulyás AI; Freund TF; Káli S
    Front Neural Circuits; 2016; 10():88. PubMed ID: 27877113
    [No Abstract]   [Full Text] [Related]  

  • 14. Factors mediating powerful voltage attenuation along CA1 pyramidal neuron dendrites.
    Golding NL; Mickus TJ; Katz Y; Kath WL; Spruston N
    J Physiol; 2005 Oct; 568(Pt 1):69-82. PubMed ID: 16002454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shared calcium signaling pathways in the induction of long-term potentiation and synaptic disinhibition in CA1 pyramidal cell dendrites.
    Wang JH; Stelzer A
    J Neurophysiol; 1996 Apr; 75(4):1687-702. PubMed ID: 8727406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Somatic versus dendritic resonance: differential filtering of inputs through non-uniform distributions of active conductances.
    Zhuchkova E; Remme MW; Schreiber S
    PLoS One; 2013; 8(11):e78908. PubMed ID: 24223864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visibility of synaptically induced conductance changes: theory and simulations of anatomically characterized cortical pyramidal cells.
    Koch C; Douglas R; Wehmeier U
    J Neurosci; 1990 Jun; 10(6):1728-44. PubMed ID: 2355247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplification and linearization of distal synaptic input to cortical pyramidal cells.
    Bernander O; Koch C; Douglas RJ
    J Neurophysiol; 1994 Dec; 72(6):2743-53. PubMed ID: 7897486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A re-examination of the possibility of controlling the firing rate gain of neurons by balancing excitatory and inhibitory conductances.
    Capaday C
    Exp Brain Res; 2002 Mar; 143(1):67-77. PubMed ID: 11907692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Firing clamp: a novel method for single-trial estimation of excitatory and inhibitory synaptic neuronal conductances.
    Chizhov AV; Malinina E; Druzin M; Graham LJ; Johansson S
    Front Cell Neurosci; 2014; 8():86. PubMed ID: 24734000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.