BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 34481183)

  • 1. iAtbP-Hyb-EnC: Prediction of antitubercular peptides via heterogeneous feature representation and genetic algorithm based ensemble learning model.
    Akbar S; Ahmad A; Hayat M; Rehman AU; Khan S; Ali F
    Comput Biol Med; 2021 Oct; 137():104778. PubMed ID: 34481183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying Antitubercular Peptides via Deep Forest Architecture with Effective Feature Representation.
    Yao L; Guan J; Li W; Chung CR; Deng J; Chiang YC; Lee TY
    Anal Chem; 2024 Jan; 96(4):1538-1546. PubMed ID: 38226973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein-protein interaction sites prediction by ensemble random forests with synthetic minority oversampling technique.
    Wang X; Yu B; Ma A; Chen C; Liu B; Ma Q
    Bioinformatics; 2019 Jul; 35(14):2395-2402. PubMed ID: 30520961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying GPCR-drug interaction based on wordbook learning from sequences.
    Wang P; Huang X; Qiu W; Xiao X
    BMC Bioinformatics; 2020 Apr; 21(1):150. PubMed ID: 32312232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepAVP-TPPred: identification of antiviral peptides using transformed image-based localized descriptors and binary tree growth algorithm.
    Ullah M; Akbar S; Raza A; Zou Q
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38710482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. StackDPP: a stacking ensemble based DNA-binding protein prediction model.
    Ahmed SH; Bose DB; Khandoker R; Rahman MS
    BMC Bioinformatics; 2024 Mar; 25(1):111. PubMed ID: 38486135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deepstacked-AVPs: predicting antiviral peptides using tri-segment evolutionary profile and word embedding based multi-perspective features with deep stacking model.
    Akbar S; Raza A; Zou Q
    BMC Bioinformatics; 2024 Mar; 25(1):102. PubMed ID: 38454333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale comparative review and assessment of computational methods for anti-cancer peptide identification.
    Liang X; Li F; Chen J; Li J; Wu H; Li S; Song J; Liu Q
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33316035
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved prediction of anti-angiogenic peptides based on machine learning models and comprehensive features from peptide sequences.
    Lee YC; Yu JC; Ni K; Lin YC; Chen CT
    Sci Rep; 2024 Jun; 14(1):14387. PubMed ID: 38909149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TIPred: a novel stacked ensemble approach for the accelerated discovery of tyrosinase inhibitory peptides.
    Charoenkwan P; Kongsompong S; Schaduangrat N; Chumnanpuen P; Shoombuatong W
    BMC Bioinformatics; 2023 Sep; 24(1):356. PubMed ID: 37735626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. E-CLEAP: An ensemble learning model for efficient and accurate identification of antimicrobial peptides.
    Wang SC
    PLoS One; 2024; 19(5):e0300125. PubMed ID: 38722967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IF-AIP: A machine learning method for the identification of anti-inflammatory peptides using multi-feature fusion strategy.
    Gaffar S; Hassan MT; Tayara H; Chong KT
    Comput Biol Med; 2024 Jan; 168():107724. PubMed ID: 37989075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel stacking-based predictor for accurate prediction of antimicrobial peptides.
    Kanwal S; Arif R; Ahmed S; Kabir M
    J Biomol Struct Dyn; 2024 Mar; ():1-12. PubMed ID: 38500243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amino acid classification based spectrum kernel fusion for protein subnuclear localization.
    Mei S; Fei W
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S17. PubMed ID: 20122188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ACP-ML: A sequence-based method for anticancer peptide prediction.
    Bian J; Liu X; Dong G; Hou C; Huang S; Zhang D
    Comput Biol Med; 2024 Mar; 170():108063. PubMed ID: 38301519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G-ACP: a machine learning approach to the prediction of therapeutic peptides for gastric cancer.
    Azad H; Akbar MY; Sarfraz J; Haider W; Riaz MN; Ali GM; Ghazanfar S
    J Biomol Struct Dyn; 2024 Mar; ():1-14. PubMed ID: 38450672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioactive Peptide Recognition Based on NLP Pre-Train Algorithm.
    Jiang L; Sun N; Zhang Y; Yu X; Liu X
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3809-3819. PubMed ID: 37815965
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PAMPred: A hierarchical evolutionary ensemble framework for identifying plant antimicrobial peptides.
    Wang Z; Meng J; Li H; Xia S; Wang Y; Luan Y
    Comput Biol Med; 2023 Nov; 166():107545. PubMed ID: 37806057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ElectroPredictor: An Application to Predict Mayr's Electrophilicity
    Cuesta SA; Moreno M; López RA; Mora JR; Paz JL; Márquez EA
    J Chem Inf Model; 2023 Jan; 63(2):507-521. PubMed ID: 36594600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ADP-Fuse: A novel two-layer machine learning predictor to identify antidiabetic peptides and diabetes types using multiview information.
    Basith S; Pham NT; Song M; Lee G; Manavalan B
    Comput Biol Med; 2023 Oct; 165():107386. PubMed ID: 37619323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.