These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 34481183)

  • 21. ADP-Fuse: A novel two-layer machine learning predictor to identify antidiabetic peptides and diabetes types using multiview information.
    Basith S; Pham NT; Song M; Lee G; Manavalan B
    Comput Biol Med; 2023 Oct; 165():107386. PubMed ID: 37619323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Effective Plant Small Secretory Peptide Recognition Model Based on Feature Correction Strategy.
    Wang R; Zhou Z; Wu X; Jiang X; Zhuo L; Liu M; Li H; Fu X; Yao X
    J Chem Inf Model; 2024 Apr; 64(7):2798-2806. PubMed ID: 37643082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DGA-5mC: A 5-methylcytosine site prediction model based on an improved DenseNet and bidirectional GRU method.
    Jia J; Qin L; Lei R
    Math Biosci Eng; 2023 Mar; 20(6):9759-9780. PubMed ID: 37322910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ensemble Machine Learning and Predicted Properties Promote Antimicrobial Peptide Identification.
    Zhong G; Liu H; Deng L
    Interdiscip Sci; 2024 Jul; ():. PubMed ID: 38972032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting Anti-inflammatory Peptides by Ensemble Machine Learning and Deep Learning.
    Guan J; Yao L; Chung CR; Xie P; Zhang Y; Deng J; Chiang YC; Lee TY
    J Chem Inf Model; 2023 Dec; 63(24):7886-7898. PubMed ID: 38054927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PMTPred: machine-learning-based prediction of protein methyltransferases using the composition of k-spaced amino acid pairs.
    Yadav AK; Gupta PK; Singh TR
    Mol Divers; 2024 Jul; ():. PubMed ID: 39033257
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PACVP: Prediction of Anti-Coronavirus Peptides Using a Stacking Learning Strategy With Effective Feature Representation.
    Chen S; Liao Y; Zhao J; Bin Y; Zheng C
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(5):3106-3116. PubMed ID: 37022025
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of peptide hormones using an ensemble of machine learning and similarity-based methods.
    Kaur D; Arora A; Vigneshwar P; Raghava GPS
    Proteomics; 2024 May; ():e2400004. PubMed ID: 38803012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SAMP: Identifying Antimicrobial Peptides by an Ensemble Learning Model Based on Proportionalized Split Amino Acid Composition.
    Feng J; Sun M; Liu C; Zhang W; Xu C; Wang J; Wang G; Wan S
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712184
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effective single-cell clustering through ensemble feature selection and similarity measurements.
    Jeong H; Khunlertgit N
    Comput Biol Chem; 2020 May; 87():107283. PubMed ID: 32585598
    [TBL] [Abstract][Full Text] [Related]  

  • 31. FEOpti-ACVP: identification of novel anti-coronavirus peptide sequences based on feature engineering and optimization.
    Jiang J; Pei H; Li J; Li M; Zou Q; Lv Z
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38366802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MA-PEP: A novel anticancer peptide prediction framework with multimodal feature fusion based on attention mechanism.
    Liang X; Zhao H; Wang J
    Protein Sci; 2024 Apr; 33(4):e4966. PubMed ID: 38532681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. AIPs-SnTCN: Predicting Anti-Inflammatory Peptides Using fastText and Transformer Encoder-Based Hybrid Word Embedding with Self-Normalized Temporal Convolutional Networks.
    Raza A; Uddin J; Almuhaimeed A; Akbar S; Zou Q; Ahmad A
    J Chem Inf Model; 2023 Nov; 63(21):6537-6554. PubMed ID: 37905969
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leveraging a meta-learning approach to advance the accuracy of Na
    Shoombuatong W; Homdee N; Schaduangrat N; Chumnanpuen P
    Sci Rep; 2024 Feb; 14(1):4463. PubMed ID: 38396246
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exhaustive Exploitation of Nature-Inspired Computation for Cancer Screening in an Ensemble Manner.
    Wang X; Wang Y; Ma Z; Wong KC; Li X
    IEEE/ACM Trans Comput Biol Bioinform; 2024 Apr; PP():. PubMed ID: 38578856
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Batch normalization followed by merging is powerful for phenotype prediction integrating multiple heterogeneous studies.
    Gao Y; Sun F
    PLoS Comput Biol; 2023 Oct; 19(10):e1010608. PubMed ID: 37844077
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An explainable stacking-based approach for accelerating the prediction of antidiabetic peptides.
    Arshad F; Ahmed S; Amjad A; Kabir M
    Anal Biochem; 2024 Aug; 691():115546. PubMed ID: 38670418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new framework based on features modeling and ensemble learning to predict query performance.
    Zaghloul M; Salem M; Ali-Eldin A
    PLoS One; 2021; 16(10):e0258439. PubMed ID: 34662344
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A BERT-based approach for identifying anti-inflammatory peptides using sequence information.
    Xu T; Wang Q; Yang Z; Ying J
    Heliyon; 2024 Jun; 10(12):e32951. PubMed ID: 38988537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. MLapRVFL: Protein sequence prediction based on Multi-Laplacian Regularized Random Vector Functional Link.
    Gu X; Ding Y; Xiao P
    Comput Biol Med; 2023 Dec; 167():107618. PubMed ID: 37925912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.