These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34481198)

  • 1. Automated detection and explainability of pathological gait patterns using a one-class support vector machine trained on inertial measurement unit based gait data.
    Teufl W; Taetz B; Miezal M; Dindorf C; Fröhlich M; Trinler U; Hogan A; Bleser G
    Clin Biomech (Bristol, Avon); 2021 Oct; 89():105452. PubMed ID: 34481198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards an Inertial Sensor-Based Wearable Feedback System for Patients after Total Hip Arthroplasty: Validity and Applicability for Gait Classification with Gait Kinematics-Based Features.
    Teufl W; Taetz B; Miezal M; Lorenz M; Pietschmann J; Jöllenbeck T; Fröhlich M; Bleser G
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31744141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretability of Input Representations for Gait Classification in Patients after Total Hip Arthroplasty.
    Dindorf C; Teufl W; Taetz B; Bleser G; Fröhlich M
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32781583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of inertial sensor-based gait patterns of orthopaedic conditions using machine learning: A pilot study.
    Dammeyer C; Nüesch C; Visscher RMS; Kim YK; Ismailidis P; Wittauer M; Stoffel K; Acklin Y; Egloff C; Netzer C; Mündermann A
    J Orthop Res; 2024 Jul; 42(7):1463-1472. PubMed ID: 38341759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of Primary and Revision Total Hip Arthroplasty on Gait Kinematics].
    Janura M; ZahutovÁ E; Gallo J; Svoboda Z; HonzÍkovÁ L
    Acta Chir Orthop Traumatol Cech; 2020; 87(4):243-250. PubMed ID: 32940219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classifying lower extremity muscle fatigue during walking using machine learning and inertial sensors.
    Zhang J; Lockhart TE; Soangra R
    Ann Biomed Eng; 2014 Mar; 42(3):600-12. PubMed ID: 24081829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Machine Learning Framework for Gait Classification Using Inertial Sensors: Application to Elderly, Post-Stroke and Huntington's Disease Patients.
    Mannini A; Trojaniello D; Cereatti A; Sabatini AM
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26805847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination of vestibular function based on inertial sensors.
    Liu X; Yu S; Zang X; Yu Q; Yang L
    Comput Methods Programs Biomed; 2022 Feb; 214():106554. PubMed ID: 34896686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification and Automated Interpretation of Spinal Posture Data Using a Pathology-Independent Classifier and Explainable Artificial Intelligence (XAI).
    Dindorf C; Konradi J; Wolf C; Taetz B; Bleser G; Huthwelker J; Werthmann F; Bartaguiz E; Kniepert J; Drees P; Betz U; Fröhlich M
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Approach to Support the Detection of Parkinson's Disease in IMU-Based Gait Analysis.
    Trabassi D; Serrao M; Varrecchia T; Ranavolo A; Coppola G; De Icco R; Tassorelli C; Castiglia SF
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A machine learning approach to detect changes in gait parameters following a fatiguing occupational task.
    Baghdadi A; Megahed FM; Esfahani ET; Cavuoto LA
    Ergonomics; 2018 Aug; 61(8):1116-1129. PubMed ID: 29452575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer Vision and Machine Learning-Based Gait Pattern Recognition for Flat Fall Prediction.
    Chen B; Chen C; Hu J; Sayeed Z; Qi J; Darwiche HF; Little BE; Lou S; Darwish M; Foote C; Palacio-Lascano C
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298311
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of pelvis kinematics in level walking based on a single inertial sensor positioned close to the sacrum: validation on healthy subjects with stereophotogrammetric system.
    Buganè F; Benedetti MG; D'Angeli V; Leardini A
    Biomed Eng Online; 2014 Oct; 13():146. PubMed ID: 25336170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Validation of inertial measurement units with optical tracking system in patients operated with Total hip arthroplasty.
    Zügner R; Tranberg R; Timperley J; Hodgins D; Mohaddes M; Kärrholm J
    BMC Musculoskelet Disord; 2019 Feb; 20(1):52. PubMed ID: 30727979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion Sensors-Based Machine Learning Approach for the Identification of Anterior Cruciate Ligament Gait Patterns in On-the-Field Activities in Rugby Players.
    Tedesco S; Crowe C; Ryan A; Sica M; Scheurer S; Clifford AM; Brown KN; O'Flynn B
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32471051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Freezing of Gait in Parkinson's Disease Using Wearables and Machine Learning.
    Borzì L; Mazzetta I; Zampogna A; Suppa A; Olmo G; Irrera F
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explainable Deep-Learning-Based Gait Analysis of Hip-Knee Cyclogram for the Prediction of Adolescent Idiopathic Scoliosis Progression.
    Kim YG; Kim S; Park JH; Yang S; Jang M; Yun YJ; Cho JS; You S; Jang SH
    Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39065902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent validity and inter trial reliability of a single inertial measurement unit for spatial-temporal gait parameter analysis in patients with recent total hip or total knee arthroplasty.
    Bravi M; Gallotta E; Morrone M; Maselli M; Santacaterina F; Toglia R; Foti C; Sterzi S; Bressi F; Miccinilli S
    Gait Posture; 2020 Feb; 76():175-181. PubMed ID: 31862666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective detection of abnormal gait patterns in Parkinson's disease patients using kinematics, nonlinear, and stability gait features.
    Carvajal-Castaño HA; Lemos-Duque JD; Orozco-Arroyave JR
    Hum Mov Sci; 2022 Feb; 81():102891. PubMed ID: 34781093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cognitive driven gait freezing phase detection and classification for neuro-rehabilitated patients using machine learning algorithms.
    Khamparia A; Gupta D; Maashi M; Mengash HA
    J Neurosci Methods; 2024 Sep; 409():110183. PubMed ID: 38834145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.