These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 34481309)
1. Analytical model for the prediction of permeability of triply periodic minimal surfaces. Asbai-Ghoudan R; Ruiz de Galarreta S; Rodriguez-Florez N J Mech Behav Biomed Mater; 2021 Dec; 124():104804. PubMed ID: 34481309 [TBL] [Abstract][Full Text] [Related]
2. The effects of sheet and network solid structures of similar TPMS scaffold architectures on permeability, wall shear stress, and velocity: A CFD analysis. Karaman D; Ghahramanzadeh Asl H Med Eng Phys; 2023 Aug; 118():104024. PubMed ID: 37536832 [TBL] [Abstract][Full Text] [Related]
4. The anisotropic elastic behavior of the widely-used triply-periodic minimal surface based scaffolds. Lu Y; Zhao W; Cui Z; Zhu H; Wu C J Mech Behav Biomed Mater; 2019 Nov; 99():56-65. PubMed ID: 31344523 [TBL] [Abstract][Full Text] [Related]
5. Design procedure for triply periodic minimal surface based biomimetic scaffolds. Günther F; Wagner M; Pilz S; Gebert A; Zimmermann M J Mech Behav Biomed Mater; 2022 Feb; 126():104871. PubMed ID: 34654652 [TBL] [Abstract][Full Text] [Related]
6. [Design of new gradient scaffolds based on triply periodic minimal surfaces and study on its mechanical, permeability and tissue differentiation characteristics]. Liu Z; Gong H; Gao J; Liu Z; Zou S; Tian S Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Oct; 38(5):960-968. PubMed ID: 34713664 [TBL] [Abstract][Full Text] [Related]
7. Comparison of the design maps of TPMS based bone scaffolds using a computational modeling framework simultaneously considering various conditions. Lu Y; Huo Y; Zou J; Li Y; Yang Z; Zhu H; Wu C Proc Inst Mech Eng H; 2022 Aug; 236(8):1157-1168. PubMed ID: 35647704 [TBL] [Abstract][Full Text] [Related]
8. Improvement in Active Cell Proliferation Area at Higher Permeability With Novel TPMS Lattice Structure. Nhaichaniya GK; Kumar M; Dayal R J Biomech Eng; 2024 Nov; 146(11):. PubMed ID: 39152719 [TBL] [Abstract][Full Text] [Related]
10. Mechanical Properties Directionality and Permeability of Fused Triply Periodic Minimal Surface Porous Scaffolds Fabricated by Selective Laser Melting. Ye J; He W; Wei T; Sun C; Zeng S ACS Biomater Sci Eng; 2023 Aug; 9(8):5084-5096. PubMed ID: 37489944 [TBL] [Abstract][Full Text] [Related]
11. Triply Periodic Minimal Surfaces (TPMS) for the Generation of Porous Architectures Using Stereolithography. Blanquer SBG; Grijpma DW Methods Mol Biol; 2021; 2147():19-30. PubMed ID: 32840807 [TBL] [Abstract][Full Text] [Related]
12. Multi-parameter design of triply periodic minimal surface scaffolds: from geometry optimization to biomechanical simulation. Yang X; Sun Z; Hu Y; Mi C Biomed Mater; 2024 Jul; 19(5):. PubMed ID: 38917813 [TBL] [Abstract][Full Text] [Related]
13. Biomimetic scaffolds using triply periodic minimal surface-based porous structures for biomedical applications. Pugliese R; Graziosi S SLAS Technol; 2023 Jun; 28(3):165-182. PubMed ID: 37127136 [TBL] [Abstract][Full Text] [Related]
14. Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure. Lu Y; Cheng L; Yang Z; Li J; Zhu H PLoS One; 2020; 15(9):e0238471. PubMed ID: 32870933 [TBL] [Abstract][Full Text] [Related]
15. Numerical and experimental evaluation of TPMS Gyroid scaffolds for bone tissue engineering. Castro APG; Ruben RB; Gonçalves SB; Pinheiro J; Guedes JM; Fernandes PR Comput Methods Biomech Biomed Engin; 2019 May; 22(6):567-573. PubMed ID: 30773050 [TBL] [Abstract][Full Text] [Related]
16. Additively Manufactured Scaffolds with Optimized Thickness Based on Triply Periodic Minimal Surface. Zhu J; Zou S; Mu Y; Wang J; Jin Y Materials (Basel); 2022 Oct; 15(20):. PubMed ID: 36295151 [TBL] [Abstract][Full Text] [Related]