These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 34481352)

  • 1. Amelioration of AsV toxicity by concurrent application of ZnO-NPs and Se-NPs is associated with differential regulation of photosynthetic indexes, antioxidant pool and osmolytes content in soybean seedling.
    Zeeshan M; Hu YX; Iqbal A; Salam A; Liu YX; Muhammad I; Ahmad S; Khan AH; Hale B; Wu HY; Zhou XB
    Ecotoxicol Environ Saf; 2021 Dec; 225():112738. PubMed ID: 34481352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defense interplay of the zinc-oxide nanoparticles and melatonin in alleviating the arsenic stress in soybean (Glycine max L.).
    Bhat JA; Faizan M; Bhat MA; Huang F; Yu D; Ahmad A; Bajguz A; Ahmad P
    Chemosphere; 2022 Feb; 288(Pt 2):132471. PubMed ID: 34626653
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of gibberellic acid on growth, photosynthesis and antioxidant defense system of wheat under zinc oxide nanoparticle stress.
    Iftikhar A; Ali S; Yasmeen T; Arif MS; Zubair M; Rizwan M; Alhaithloul HAS; Alayafi AAM; Soliman MH
    Environ Pollut; 2019 Nov; 254(Pt B):113109. PubMed ID: 31487671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc oxide nanoparticles alleviates the adverse effects of cadmium stress on Oryza sativa via modulation of the photosynthesis and antioxidant defense system.
    Faizan M; Bhat JA; Hessini K; Yu F; Ahmad P
    Ecotoxicol Environ Saf; 2021 Sep; 220():112401. PubMed ID: 34118747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc Oxide Nanoparticles Application Alleviates Arsenic (As) Toxicity in Soybean Plants by Restricting the Uptake of as and Modulating Key Biochemical Attributes, Antioxidant Enzymes, Ascorbate-Glutathione Cycle and Glyoxalase System.
    Ahmad P; Alyemeni MN; Al-Huqail AA; Alqahtani MA; Wijaya L; Ashraf M; Kaya C; Bajguz A
    Plants (Basel); 2020 Jun; 9(7):. PubMed ID: 32630094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foliar application of zinc oxide nanoparticles: An effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation.
    Ghani MI; Saleem S; Rather SA; Rehmani MS; Alamri S; Rajput VD; Kalaji HM; Saleem N; Sial TA; Liu M
    Chemosphere; 2022 Feb; 289():133202. PubMed ID: 34890613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of phytostabilized zinc oxide nanoparticles and their effects on physiological and anti-oxidative responses of Zea mays (L.) under chromium stress.
    Ramzan M; Naz G; Shah AA; Parveen M; Jamil M; Gill S; Sharif HMA
    Plant Physiol Biochem; 2023 Mar; 196():130-138. PubMed ID: 36706692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of zinc oxide nanoparticles on arsenic stress in rice (Oryza sativa L.): germination, early growth, and arsenic uptake.
    Wu F; Fang Q; Yan S; Pan L; Tang X; Ye W
    Environ Sci Pollut Res Int; 2020 Jul; 27(21):26974-26981. PubMed ID: 32385821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Brassinosteroid Ameliorates Zinc Oxide Nanoparticles-Induced Oxidative Stress by Improving Antioxidant Potential and Redox Homeostasis in Tomato Seedling.
    Li M; Ahammed GJ; Li C; Bao X; Yu J; Huang C; Yin H; Zhou J
    Front Plant Sci; 2016; 7():615. PubMed ID: 27242821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ameliorative effects of plant growth promoting bacteria, zinc oxide nanoparticles and oxalic acid on Luffa acutangula grown on arsenic enriched soil.
    Tanveer Y; Yasmin H; Nosheen A; Ali S; Ahmad A
    Environ Pollut; 2022 May; 300():118889. PubMed ID: 35085652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased ZnO nanoparticle toxicity to wheat upon co-exposure to phenanthrene.
    Zhu J; Zou Z; Shen Y; Li J; Shi S; Han S; Zhan X
    Environ Pollut; 2019 Apr; 247():108-117. PubMed ID: 30669078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphological and Proteomic Analyses of Soybean Seedling Interaction Mechanism Affected by Fiber Crosslinked with Zinc-Oxide Nanoparticles.
    Komatsu S; Murata K; Yakeishi S; Shimada K; Yamaguchi H; Hitachi K; Tsuchida K; Obi R; Akita S; Fukuda R
    Int J Mol Sci; 2022 Jul; 23(13):. PubMed ID: 35806419
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium oxide nanoparticles alleviate arsenic toxicity, reduce oxidative stress and arsenic accumulation in rice (Oryza sativa L.).
    Koley R; Mishra D; Mondal NK
    Environ Sci Pollut Res Int; 2023 Nov; 30(55):117932-117951. PubMed ID: 37872343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bulk and nanoparticles of zinc oxide exerted their beneficial effects by conferring modifications in transcription factors, histone deacetylase, carbon and nitrogen assimilation, antioxidant biomarkers, and secondary metabolism in soybean.
    Mirakhorli T; Ardebili ZO; Ladan-Moghadam A; Danaee E
    PLoS One; 2021; 16(9):e0256905. PubMed ID: 34495993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined application of zinc oxide and iron nanoparticles enhanced Red Sails lettuce growth and antioxidants enzymes activities while reducing the chromium uptake by plants grown in a Cr-contaminated soil.
    Sameer A; Rabia S; Khan AAA; Zaman QU; Hussain A
    Int J Phytoremediation; 2024 Sep; 26(11):1728-1740. PubMed ID: 38745404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitro-oxidative signalling induced by chemically synthetized zinc oxide nanoparticles (ZnO NPs) in Brassica species.
    Molnár Á; Papp M; Zoltán Kovács D; Bélteky P; Oláh D; Feigl G; Szőllősi R; Rázga Z; Ördög A; Erdei L; Rónavári A; Kónya Z; Kolbert Z
    Chemosphere; 2020 Jul; 251():126419. PubMed ID: 32171133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression.
    El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA
    Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of zinc oxide nanoparticles on antioxidants, chlorophyll contents, and proline in Persicaria hydropiper L. and its potential for Pb phytoremediation.
    Hussain F; Hadi F; Rongliang Q
    Environ Sci Pollut Res Int; 2021 Jul; 28(26):34697-34713. PubMed ID: 33655481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New insights in to the ameliorative effects of zinc and iron oxide nanoparticles to arsenic stressed spinach (Spinacia oleracea L.).
    Sun Y; Mfarrej MFB; Song X; Ma J; Min B; Chen F
    Plant Physiol Biochem; 2023 Jun; 199():107715. PubMed ID: 37104975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Newly-synthesized iron-oxide nanoparticles showed synergetic effect with citric acid for alleviating arsenic phytotoxicity in soybean.
    Bhat JA; Bhat MA; Abdalmegeed D; Yu D; Chen J; Bajguz A; Ahmad A; Ahmad P
    Environ Pollut; 2022 Feb; 295():118693. PubMed ID: 34923061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.