BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34481359)

  • 21. An Endosperm-Associated Cuticle Is Required for Arabidopsis Seed Viability, Dormancy and Early Control of Germination.
    De Giorgi J; Piskurewicz U; Loubery S; Utz-Pugin A; Bailly C; Mène-Saffrané L; Lopez-Molina L
    PLoS Genet; 2015 Dec; 11(12):e1005708. PubMed ID: 26681322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis.
    Ohto MA; Floyd SK; Fischer RL; Goldberg RB; Harada JJ
    Sex Plant Reprod; 2009 Dec; 22(4):277-89. PubMed ID: 20033449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape.
    Vigeolas H; Möhlmann T; Martini N; Neuhaus HE; Geigenberger P
    Plant Physiol; 2004 Sep; 136(1):2676-86. PubMed ID: 15333758
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The metabolic role of the legume endosperm: a noninvasive imaging study.
    Melkus G; Rolletschek H; Radchuk R; Fuchs J; Rutten T; Wobus U; Altmann T; Jakob P; Borisjuk L
    Plant Physiol; 2009 Nov; 151(3):1139-54. PubMed ID: 19748915
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Light induces gene expression to enhance the synthesis of storage reserves in Brassica napus L. embryos.
    Tan H; Qi X; Li Y; Wang X; Zhou J; Liu X; Shi X; Ye W; Xiang X
    Plant Mol Biol; 2020 Jul; 103(4-5):457-471. PubMed ID: 32274640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic imprinted genes in reciprocal hybrid endosperm of Brassica napus.
    Rong H; Yang W; Zhu H; Jiang B; Jiang J; Wang Y
    BMC Plant Biol; 2021 Mar; 21(1):140. PubMed ID: 33726676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The promoter of the Arabidopsis thaliana BAN gene is active in proanthocyanidin-accumulating cells of the Brassica napus seed coat.
    Nesi N; Lucas MO; Auger B; Baron C; Lécureuil A; Guerche P; Kronenberger J; Lepiniec L; Debeaujon I; Renard M
    Plant Cell Rep; 2009 Apr; 28(4):601-17. PubMed ID: 19153740
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of specific organs on seed oil accumulation in Brassica napus L.
    Liu J; Hua W; Yang H; Guo T; Sun X; Wang X; Liu G; Wang H
    Plant Sci; 2014 Oct; 227():60-8. PubMed ID: 25219307
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early stages of seed development in Brassica napus: a seed coat-specific cysteine proteinase associated with programmed cell death of the inner integument.
    Wan L; Xia Q; Qiu X; Selvaraj G
    Plant J; 2002 Apr; 30(1):1-10. PubMed ID: 11967088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cell wall invertase as a regulator in determining sequential development of endosperm and embryo through glucose signaling early in seed development.
    Wang L; Liao S; Ruan YL
    Plant Signal Behav; 2013 Jan; 8(1):e22722. PubMed ID: 23221750
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative metabolome analysis of wheat embryo and endosperm reveals the dynamic changes of metabolites during seed germination.
    Han C; Zhen S; Zhu G; Bian Y; Yan Y
    Plant Physiol Biochem; 2017 Jun; 115():320-327. PubMed ID: 28415032
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Endosperm development is an autonomously programmed process independent of embryogenesis.
    Xiong H; Wang W; Sun MX
    Plant Cell; 2021 May; 33(4):1151-1160. PubMed ID: 33793916
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tissue and cellular mechanics of seeds.
    Steinbrecher T; Leubner-Metzger G
    Curr Opin Genet Dev; 2018 Aug; 51():1-10. PubMed ID: 29571069
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chalazal seed coat development in Brassica napus.
    Millar JL; Khan D; Becker MG; Chan A; Dufresne A; Sumner M; Belmonte MF
    Plant Sci; 2015 Dec; 241():45-54. PubMed ID: 26706057
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus.
    Lian J; Lu X; Yin N; Ma L; Lu J; Liu X; Li J; Lu J; Lei B; Wang R; Chai Y
    Plant Sci; 2017 Jan; 254():32-47. PubMed ID: 27964783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Starch turnover in developing oilseed embryos.
    Andriotis VM; Pike MJ; Kular B; Rawsthorne S; Smith AM
    New Phytol; 2010 Aug; 187(3):791-804. PubMed ID: 20546137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.
    Tan H; Xie Q; Xiang X; Li J; Zheng S; Xu X; Guo H; Ye W
    PLoS One; 2015; 10(4):e0124794. PubMed ID: 25919591
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Embryo and endosperm, partners in seed development.
    Lafon-Placette C; Köhler C
    Curr Opin Plant Biol; 2014 Feb; 17():64-9. PubMed ID: 24507496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1.
    Elahi N; Duncan RW; Stasolla C
    Plant Physiol Biochem; 2016 Mar; 100():52-63. PubMed ID: 26773545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative Transcriptome Analysis of Developing Seeds and Silique Wall Reveals Dynamic Transcription Networks for Effective Oil Production in
    Shahid M; Cai G; Zu F; Zhao Q; Qasim MU; Hong Y; Fan C; Zhou Y
    Int J Mol Sci; 2019 Apr; 20(8):. PubMed ID: 31018533
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.