These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34481914)

  • 1. Impact of cochlear ablation on calbindin and synaptophysin in the gerbil medial nucleus of the trapezoid body before hearing onset.
    Bazwinsky-Wutschke I; Dehghani F
    J Chem Neuroanat; 2021 Dec; 118():102023. PubMed ID: 34481914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of cochlear ablation on calretinin and synaptophysin in the gerbil anteroventral cochlear nucleus before the hearing onset.
    Bazwinsky-Wutschke I; Dehghani F
    J Chem Neuroanat; 2020 Jan; 104():101746. PubMed ID: 31945410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of human auditory brainstem circuits by calcium-binding protein immunohistochemistry.
    Kulesza RJ
    Neuroscience; 2014 Jan; 258():318-31. PubMed ID: 24291726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KCNQ5 reaches synaptic endings in the auditory brainstem at hearing onset and targeting maintenance is activity-dependent.
    Garcia-Pino E; Caminos E; Juiz JM
    J Comp Neurol; 2010 Apr; 518(8):1301-14. PubMed ID: 20151361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential morphology of the superior olivary complex of Meriones unguiculatus and Monodelphis domestica revealed by calcium-binding proteins.
    Bazwinsky-Wutschke I; Härtig W; Kretzschmar R; Rübsamen R
    Brain Struct Funct; 2016 Dec; 221(9):4505-4523. PubMed ID: 26792006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strengthening of the Efferent Olivocochlear System Leads to Synaptic Dysfunction and Tonotopy Disruption of a Central Auditory Nucleus.
    Di Guilmi MN; Boero LE; Castagna VC; Rodríguez-Contreras A; Wedemeyer C; Gómez-Casati ME; Elgoyhen AB
    J Neurosci; 2019 Sep; 39(36):7037-7048. PubMed ID: 31217330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Topographic map refinement and synaptic strengthening of a sound localization circuit require spontaneous peripheral activity.
    Müller NIC; Sonntag M; Maraslioglu A; Hirtz JJ; Friauf E
    J Physiol; 2019 Nov; 597(22):5469-5493. PubMed ID: 31529505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endogenous Cholinergic Signaling Modulates Sound-Evoked Responses of the Medial Nucleus of the Trapezoid Body.
    Zhang C; Beebe NL; Schofield BR; Pecka M; Burger RM
    J Neurosci; 2021 Jan; 41(4):674-688. PubMed ID: 33268542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural and Functional Development of Inhibitory Connections from the Medial Nucleus of the Trapezoid Body to the Superior Paraolivary Nucleus.
    Lee J; Clause A; Kandler K
    J Neurosci; 2023 Nov; 43(46):7766-7779. PubMed ID: 37734946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of altered neuronal activity on cell size in the medial nucleus of the trapezoid body and ventral cochlear nucleus of the gerbil.
    Pasic TR; Moore DR; Rubel EW
    J Comp Neurol; 1994 Oct; 348(1):111-20. PubMed ID: 7814680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of ventral cochlear nucleus projections to the superior olivary complex in gerbil.
    Kil J; Kageyama GH; Semple MN; Kitzes LM
    J Comp Neurol; 1995 Mar; 353(3):317-40. PubMed ID: 7751434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the superior olivary complex of Canis lupus domesticus.
    Fech T; Calderón-Garcidueñas L; Kulesza RJ
    Hear Res; 2017 Aug; 351():130-140. PubMed ID: 28633959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroanatomical characterization of perineuronal net components in the human cochlear nucleus and superior olivary complex.
    Weinrich L; Sonntag M; Arendt T; Morawski M
    Hear Res; 2018 Sep; 367():32-47. PubMed ID: 30025262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of ectopic projections from the ventral cochlear nucleus to the superior olivary complex induced by neonatal ablation of the contralateral cochlea.
    Kitzes LM; Kageyama GH; Semple MN; Kil J
    J Comp Neurol; 1995 Mar; 353(3):341-63. PubMed ID: 7751435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transient appearance of calbindin-D28k-positive neurons in the superior olivary complex of developing rats.
    Friauf E
    J Comp Neurol; 1993 Aug; 334(1):59-74. PubMed ID: 8408759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptic Inhibition of Medial Olivocochlear Efferent Neurons by Neurons of the Medial Nucleus of the Trapezoid Body.
    Torres Cadenas L; Fischl MJ; Weisz CJC
    J Neurosci; 2020 Jan; 40(3):509-525. PubMed ID: 31719165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatostatin and leu-enkephalin in the rat auditory brainstem during fetal and postnatal development.
    Kungel M; Friauf E
    Anat Embryol (Berl); 1995 May; 191(5):425-43. PubMed ID: 7625613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species-Specific Adaptation for Ongoing High-Frequency Action Potential Generation in MNTB Neurons.
    Kladisios N; Wicke KD; Pätz-Warncke C; Felmy F
    J Neurosci; 2023 Apr; 43(15):2714-2729. PubMed ID: 36898837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deafferentation induces novel axonal projections in the auditory brainstem after hearing onset.
    Hsieh CY; Cramer KS
    J Comp Neurol; 2006 Aug; 497(4):589-99. PubMed ID: 16739167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Afferent reorganisation within the superior olivary complex of the gerbil: development and induction by neonatal, unilateral cochlear removal.
    Russell FA; Moore DR
    J Comp Neurol; 1995 Feb; 352(4):607-25. PubMed ID: 7722003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.