These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34482093)

  • 1. Strength, corrosion resistance and cellular response of interfaces in bioresorbable poly-lactic acid/Mg fiber composites for orthopedic applications.
    Ali W; Echeverry-Rendón M; Kopp A; González C; LLorca J
    J Mech Behav Biomed Mater; 2021 Nov; 123():104781. PubMed ID: 34482093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composite material stent comprising metallic wire and polylactic acid fibers, and its mechanical strength and retrievability.
    Shomura Y; Tanigawa N; Tokuda T; Kariya S; Kojima H; Komemushi A; Sawada S
    Acta Radiol; 2009 May; 50(4):355-9. PubMed ID: 19306137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. I. Raw material evaluation and measurement of fiber-matrix interfacial adhesion.
    Slivka MA; Chu CC; Adisaputro IA
    J Biomed Mater Res; 1997 Sep; 36(4):469-77. PubMed ID: 9294762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates.
    Felfel RM; Ahmed I; Parsons AJ; Haque P; Walker GS; Rudd CD
    J Biomater Appl; 2012 Mar; 26(7):765-89. PubMed ID: 21123285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite.
    Ahmed I; Cronin PS; Abou Neel EA; Parsons AJ; Knowles JC; Rudd CD
    J Biomed Mater Res B Appl Biomater; 2009 Apr; 89(1):18-27. PubMed ID: 18800348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fiber-matrix interface studies on bioabsorbable composite materials for internal fixation of bone fractures. II. A new method using laser scanning confocal microscopy.
    Slivka MA; Chu CC
    J Biomed Mater Res; 1997 Dec; 37(3):353-62. PubMed ID: 9368140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reinforced Poly(Propylene Carbonate) Composite with Enhanced and Tunable Characteristics, an Alternative for Poly(lactic Acid).
    Manavitehrani I; Fathi A; Wang Y; Maitz PK; Dehghani F
    ACS Appl Mater Interfaces; 2015 Oct; 7(40):22421-30. PubMed ID: 26376751
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.
    Shikinami Y; Okuno M
    Biomaterials; 1999 May; 20(9):859-77. PubMed ID: 10226712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized polymer coating for magnesium alloy-based bioresorbable scaffolds for long-lasting drug release and corrosion resistance.
    Xu W; Yagoshi K; Koga Y; Sasaki M; Niidome T
    Colloids Surf B Biointerfaces; 2018 Mar; 163():100-106. PubMed ID: 29284158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Properties of Poly(Lactic Acid) Composites Prepared from Different Components of Corn Straw Fiber.
    Qi Z; Wang B; Sun C; Yang M; Chen X; Zheng D; Yao W; Chen Y; Cheng R; Zhang Y
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable polyesters reinforced with surface-modified vegetable fibers.
    Zini E; Baiardo M; Armelao L; Scandola M
    Macromol Biosci; 2004 Mar; 4(3):286-95. PubMed ID: 15468219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro corrosion study of PLA/Mg composites for cardiovascular stent applications.
    Hasanpur E; Ghazavizadeh A; Sadeghi A; Haboussi M
    J Mech Behav Biomed Mater; 2021 Dec; 124():104768. PubMed ID: 34607299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antibacterial PLA/Mg composite with enhanced mechanical and biological performance for biodegradable orthopedic implants.
    Lee H; Shin DY; Na Y; Han G; Kim J; Kim N; Bang SJ; Kang HS; Oh S; Yoon CB; Park J; Kim HE; Jung HD; Kang MH
    Biomater Adv; 2023 Sep; 152():213523. PubMed ID: 37336010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired polydopamine deposition and silane grafting modification of bamboo fiber for improved interface compatibility of poly (lactic acid) composites.
    Zhang K; Chen Z; Boukhir M; Song W; Zhang S
    Int J Biol Macromol; 2022 Mar; 201():121-132. PubMed ID: 34973263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of diameter of poly(lactic acid) fiber on the physical properties of poly(ɛ-caprolactone).
    Ju D; Han L; Guo Z; Bian J; Li F; Chen S; Dong L
    Int J Biol Macromol; 2015 May; 76():49-57. PubMed ID: 25709010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable poly-lactic acid based-composite reinforced unidirectionally with high-strength magnesium alloy wires.
    Li X; Chu CL; Liu L; Liu XK; Bai J; Guo C; Xue F; Lin PH; Chu PK
    Biomaterials; 2015 May; 49():135-44. PubMed ID: 25725562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Preparation of Poly(lactic acid)/Brushite Bilayer Coating on Biodegradable Magnesium Alloys with Multiple Functionalities for Orthopedic Application.
    Zhang L; Pei J; Wang H; Shi Y; Niu J; Yuan F; Huang H; Zhang H; Yuan G
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):9437-9448. PubMed ID: 28244328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro degradation behavior of Mg wire/poly(lactic acid) composite rods prepared by hot pressing and hot drawing.
    Cai H; Meng J; Li X; Xue F; Chu C; Guo C; Bai J
    Acta Biomater; 2019 Oct; 98():125-141. PubMed ID: 31146034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents.
    Zilberman M; Nelson KD; Eberhart RC
    J Biomed Mater Res B Appl Biomater; 2005 Aug; 74(2):792-9. PubMed ID: 15991233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass.
    Navarro M; Ginebra MP; Planell JA; Barrias CC; Barbosa MA
    Acta Biomater; 2005 Jul; 1(4):411-9. PubMed ID: 16701822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.