These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34482137)

  • 1. Can the green energies improve the sustainability of electrochemically-assisted soil remediation processes?
    Fernández-Marchante CM; Souza FL; Millán M; Lobato J; Rodrigo MA
    Sci Total Environ; 2022 Jan; 803():149991. PubMed ID: 34482137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies for powering electrokinetic soil remediation: A way to optimize performance of the environmental technology.
    Millán M; Bucio-Rodríguez PY; Lobato J; Fernández-Marchante CM; Roa-Morales G; Barrera-Díaz C; Rodrigo MA
    J Environ Manage; 2020 Aug; 267():110665. PubMed ID: 32421682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving sustainability of electrolytic wastewater treatment processes by green powering.
    Fernández-Marchante CM; Souza FL; Millán M; Lobato J; Rodrigo MA
    Sci Total Environ; 2021 Feb; 754():142230. PubMed ID: 33254883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward more sustainable photovoltaic solar electrochemical oxidation treatments: Influence of hydraulic and electrical distribution.
    Millán M; García-Orozco VM; Lobato J; Fernández-Marchante CM; Roa-Morales G; Linares-Hernández I; Natividad R; Rodrigo MA
    J Environ Manage; 2021 May; 285():112064. PubMed ID: 33588169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of wind-powered soil electroremediation process for the removal of 2,4-D from soil.
    Souza FL; Llanos J; Sáez C; Lanza MRV; Rodrigo MA; Cañizares P
    J Environ Manage; 2016 Apr; 171():128-132. PubMed ID: 26861224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does intensification with UV light and US improve the sustainability of electrolytic waste treatment processes?
    Fernández-Marchante CM; Souza FL; Millán M; Lobato J; Rodrigo MA
    J Environ Manage; 2021 Feb; 279():111597. PubMed ID: 33168294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of the Life Cycle of a Wind and Photovoltaic Power Plant in the Context of Sustainable Development of Energy Systems.
    Piotrowska K; Piasecka I; Kłos Z; Marczuk A; Kasner R
    Materials (Basel); 2022 Nov; 15(21):. PubMed ID: 36363369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An optimization method for energy structures based on life cycle assessment and its application to the power grid in China.
    Ding N; Pan J; Liu J; Yang J
    J Environ Manage; 2019 May; 238():18-24. PubMed ID: 30851557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recycling drainage effluents using reverse osmosis powered by photovoltaic solar energy in hydroponic tomato production: Environmental footprint analysis.
    Martin-Gorriz B; Maestre-Valero JF; Gallego-Elvira B; Marín-Membrive P; Terrero P; Martínez-Alvarez V
    J Environ Manage; 2021 Nov; 297():113326. PubMed ID: 34314966
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Comparative life cycle environmental assessment between electric taxi and gasoline taxi in Beijing].
    Shi XQ; Sun ZX; Li XN; Li JX; Yang JX
    Huan Jing Ke Xue; 2015 Mar; 36(3):1105-16. PubMed ID: 25929083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the environmental sustainability of electricity generation in Chile.
    Gaete-Morales C; Gallego-Schmid A; Stamford L; Azapagic A
    Sci Total Environ; 2018 Sep; 636():1155-1170. PubMed ID: 29913578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency.
    Hassanpour Adeh E; Selker JS; Higgins CW
    PLoS One; 2018; 13(11):e0203256. PubMed ID: 30383761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wind farm and solar park effects on plant-soil carbon cycling: uncertain impacts of changes in ground-level microclimate.
    Armstrong A; Waldron S; Whitaker J; Ostle NJ
    Glob Chang Biol; 2014 Jun; 20(6):1699-706. PubMed ID: 24132939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perspectives on environmental impacts and a land reclamation strategy for solar and wind energy systems.
    Dhar A; Naeth MA; Jennings PD; Gamal El-Din M
    Sci Total Environ; 2020 May; 718():134602. PubMed ID: 31843306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solar Photovoltaic and Wind Energy Providing Water.
    Jones LE; Olsson G
    Glob Chall; 2017 Aug; 1(5):1600022. PubMed ID: 31565278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal Requirements for Building Electrical Grid Systems of Global Wind Power and Utility-Scale Solar Photovoltaic until 2050.
    Chen Z; Kleijn R; Lin HX
    Environ Sci Technol; 2023 Jan; 57(2):1080-1091. PubMed ID: 36580676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Renewable solar and wind energies on buildings for green ports in Egypt.
    Tawfik M; Shehata AS; Hassan AA; Kotb MA
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):47602-47629. PubMed ID: 36740619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards a large-scale integration of renewable energies in Morocco.
    Boulakhbar M; Lebrouhi B; Kousksou T; Smouh S; Jamil A; Maaroufi M; Zazi M
    J Energy Storage; 2020 Dec; 32():101806. PubMed ID: 32904961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Removal of fluorine from contaminated soil by electrokinetic treatment driven by solar energy.
    Zhou M; Zhu S; Liu Y; Wang X
    Environ Sci Pollut Res Int; 2013 Aug; 20(8):5806-12. PubMed ID: 23475445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A technical, economic, and environmental performance of grid-connected hybrid (photovoltaic-wind) power system in Algeria.
    Saheb-Koussa D; Koussa M; Said N
    ScientificWorldJournal; 2013; 2013():123160. PubMed ID: 24489488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.