These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 34482380)

  • 21. MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis.
    Ji X; Chen X; Yu X
    Int J Mol Sci; 2016 Mar; 17(3):349. PubMed ID: 27005616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms by which cells of the osteoblast lineage control osteoclast formation and activity.
    Martin TJ; Ng KW
    J Cell Biochem; 1994 Nov; 56(3):357-66. PubMed ID: 7876329
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Iron Overload-Induced Osteocyte Apoptosis Stimulates Osteoclast Differentiation Through Increasing Osteocytic RANKL Production In Vitro.
    Yang J; Dong D; Luo X; Zhou J; Shang P; Zhang H
    Calcif Tissue Int; 2020 Nov; 107(5):499-509. PubMed ID: 32995951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. WHI-131 Promotes Osteoblast Differentiation and Prevents Osteoclast Formation and Resorption in Mice.
    Cheon YH; Kim JY; Baek JM; Ahn SJ; Jun HY; Erkhembaatar M; Kim MS; Lee MS; Oh J
    J Bone Miner Res; 2016 Feb; 31(2):403-15. PubMed ID: 26255791
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biology of the basic multicellular unit and the pathophysiology of osteoporosis.
    Jilka RL
    Med Pediatr Oncol; 2003 Sep; 41(3):182-5. PubMed ID: 12868116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cxcl9l and Cxcr3.2 regulate recruitment of osteoclast progenitors to bone matrix in a medaka osteoporosis model.
    Phan QT; Tan WH; Liu R; Sundaram S; Buettner A; Kneitz S; Cheong B; Vyas H; Mathavan S; Schartl M; Winkler C
    Proc Natl Acad Sci U S A; 2020 Aug; 117(32):19276-19286. PubMed ID: 32719141
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Extracellular matrix networks in bone remodeling.
    Alford AI; Kozloff KM; Hankenson KD
    Int J Biochem Cell Biol; 2015 Aug; 65():20-31. PubMed ID: 25997875
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Psoralidin, a prenylated coumestan, as a novel anti-osteoporosis candidate to enhance bone formation of osteoblasts and decrease bone resorption of osteoclasts.
    Zhai Y; Li Y; Wang Y; Cui J; Feng K; Kong X; Chen L
    Eur J Pharmacol; 2017 Apr; 801():62-71. PubMed ID: 28283388
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Streptococcus gordonii induces bone resorption by increasing osteoclast differentiation and reducing osteoblast differentiation.
    Park OJ; Kim J; Kim HY; Kwon Y; Yun CH; Han SH
    Microb Pathog; 2019 Jan; 126():218-223. PubMed ID: 30414445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Circular RNAs and hereditary bone diseases.
    Zhai N; Lu Y; Wang Y; Ren X; Han J
    Intractable Rare Dis Res; 2018 Feb; 7(1):1-6. PubMed ID: 29552438
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bone Cell Communication Factors Provide a New Therapeutic Strategy for Osteoporosis.
    Kim JH; Kim N
    Chonnam Med J; 2020 May; 56(2):94-98. PubMed ID: 32509555
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The roles of miRNA, lncRNA and circRNA in the development of osteoporosis.
    Yang Y; Yujiao W; Fang W; Linhui Y; Ziqi G; Zhichen W; Zirui W; Shengwang W
    Biol Res; 2020 Sep; 53(1):40. PubMed ID: 32938500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [New pathophysological relevant metabolic pathways in osteoporosis. Future innovative therapies?].
    Neumann E
    Z Rheumatol; 2006 Sep; 65(5):400, 402-6. PubMed ID: 16924451
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Emodin regulates bone remodeling by inhibiting osteoclastogenesis and stimulating osteoblast formation.
    Kim JY; Cheon YH; Kwak SC; Baek JM; Yoon KH; Lee MS; Oh J
    J Bone Miner Res; 2014 Jul; 29(7):1541-53. PubMed ID: 25832436
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The potential role of lncRNAs in osteoporosis.
    He Y; Chen Y
    J Bone Miner Metab; 2021 May; 39(3):341-352. PubMed ID: 33566207
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction between osteoblast and osteoclast: impact in bone disease.
    Phan TC; Xu J; Zheng MH
    Histol Histopathol; 2004 Oct; 19(4):1325-44. PubMed ID: 15375775
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Research propress of co-culture system of osteoblast with osteoclast and its applications].
    Liao NS; Chen WL; Huang YM; Chen SN
    Zhongguo Gu Shang; 2013 Apr; 26(4):349-53. PubMed ID: 23844502
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells.
    Florencio-Silva R; Sasso GR; Sasso-Cerri E; Simões MJ; Cerri PS
    Biomed Res Int; 2015; 2015():421746. PubMed ID: 26247020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Communication factors-promising targets in osteoporosis treatment.
    Zhang Y; Liu P; Li J; Li K; Teng Y; Wang X; Li X
    Curr Drug Targets; 2014 Feb; 15(2):156-63. PubMed ID: 23919828
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Parathyroid hormone temporal effects on bone formation and resorption.
    Kroll MH
    Bull Math Biol; 2000 Jan; 62(1):163-88. PubMed ID: 10824426
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.