These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34483962)

  • 1. Machine Learning Identification of Pro-arrhythmic Structures in Cardiac Fibrosis.
    Halfar R; Lawson BAJ; Dos Santos RW; Burrage K
    Front Physiol; 2021; 12():709485. PubMed ID: 34483962
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogenisation for the monodomain model in the presence of microscopic fibrotic structures.
    Lawson BAJ; Dos Santos RW; Turner IW; Bueno-Orovio A; Burrage P; Burrage K
    Commun Nonlinear Sci Numer Simul; 2023 Jan; 116():None. PubMed ID: 37113591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Similar arrhythmicity in hypertrophic and fibrotic cardiac cultures caused by distinct substrate-specific mechanisms.
    Askar SF; Bingen BO; Schalij MJ; Swildens J; Atsma DE; Schutte CI; de Vries AA; Zeppenfeld K; Ypey DL; Pijnappels DA
    Cardiovasc Res; 2013 Jan; 97(1):171-81. PubMed ID: 22977008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of ischaemia-induced arrhythmias in hypertrophic cardiomyopathy: a large-scale computational study.
    Coleman JA; Doste R; Ashkir Z; Coppini R; Sachetto R; Watkins H; Raman B; Bueno-Orovio A
    Cardiovasc Res; 2024 Jul; 120(8):914-926. PubMed ID: 38646743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow Recovery of Excitability Increases Ventricular Fibrillation Risk as Identified by Emulation.
    Lawson BA; Burrage K; Burrage P; Drovandi CC; Bueno-Orovio A
    Front Physiol; 2018; 9():1114. PubMed ID: 30210355
    [No Abstract]   [Full Text] [Related]  

  • 6. 'Trapped re-entry' as source of acute focal atrial arrhythmias.
    De Coster T; Teplenin AS; Feola I; Bart CI; Ramkisoensing AA; den Ouden BL; Ypey DL; Trines SA; Panfilov AV; Zeppenfeld K; de Vries AAF; Pijnappels DA
    Cardiovasc Res; 2024 Mar; 120(3):249-261. PubMed ID: 38048392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the arrhythmogenic risk of engineered heart tissue patches through in silico application on infarcted ventricle models.
    Fassina D; M Costa C; Bishop M; Plank G; Whitaker J; Harding SE; Niederer SA
    Comput Biol Med; 2023 Mar; 154():106550. PubMed ID: 36701966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling changes in transmural propagation and susceptibility to arrhythmia induced by volatile anaesthetics in ventricular tissue.
    Zhang H; Tao T; Kharche S; Harrison SM
    J Theor Biol; 2009 Mar; 257(2):279-91. PubMed ID: 19135456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vulnerability to re-entry in simulated two-dimensional cardiac tissue: effects of electrical restitution and stimulation sequence.
    Tran DX; Yang MJ; Weiss JN; Garfinkel A; Qu Z
    Chaos; 2007 Dec; 17(4):043115. PubMed ID: 18163779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Re-entry in models of cardiac ventricular tissue with scar represented as a Gaussian random field.
    Clayton RH; Sridhar S
    Front Physiol; 2024; 15():1403545. PubMed ID: 39005500
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of regional differences in cardiac cellular electrophysiology on the stability of ventricular arrhythmias: a computational study.
    Clayton RH; Holden AV
    Phys Med Biol; 2003 Jan; 48(1):95-111. PubMed ID: 12564503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibrosis modeling choice affects morphology of ventricular arrhythmia in non-ischemic cardiomyopathy.
    Myklebust L; Maleckar MM; Arevalo H
    Front Physiol; 2024; 15():1370795. PubMed ID: 38567113
    [No Abstract]   [Full Text] [Related]  

  • 13. Modeling dynamics in diseased cardiac tissue: Impact of model choice.
    Gokhale TA; Medvescek E; Henriquez CS
    Chaos; 2017 Sep; 27(9):093909. PubMed ID: 28964161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ventricular pro-arrhythmic phenotype, arrhythmic substrate, ageing and mitochondrial dysfunction in peroxisome proliferator activated receptor-γ coactivator-1β deficient (Pgc-1β
    Ahmad S; Valli H; Chadda KR; Cranley J; Jeevaratnam K; Huang CL
    Mech Ageing Dev; 2018 Jul; 173():92-103. PubMed ID: 29763629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Ventricular pre-excitation: electrophysiopathology, criteria for interpretation and clinical diagnosis. References for geriatrics].
    Tamburrini LR; Fontanelli A; Primossi G
    Minerva Cardioangiol; 2001 Feb; 49(1):47-73. PubMed ID: 11279385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic manipulation of anatomical re-entry by light-guided generation of a reversible local conduction block.
    Watanabe M; Feola I; Majumder R; Jangsangthong W; Teplenin AS; Ypey DL; Schalij MJ; Zeppenfeld K; de Vries AA; Pijnappels DA
    Cardiovasc Res; 2017 Mar; 113(3):354-366. PubMed ID: 28395022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of re-entry in a piece of myocardial tissue: strong sensitivity to spatial and temporal conditions.
    Wohlfart B; Ohlén G; Karlsson L
    Clin Physiol; 1996 Jul; 16(4):417-31. PubMed ID: 8842577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathophysiology of re-entrant dysrhythmias.
    Olsson SB
    Eur Heart J; 1984 Sep; 5 Suppl B():19-23. PubMed ID: 6389140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pro-Arrhythmic Effects of Discontinuous Conduction at the Purkinje Fiber-Ventricle Junction Arising From Heart Failure-Induced Ionic Remodeling - Insights From Computational Modelling.
    Jian K; Li C; Hancox JC; Zhang H
    Front Physiol; 2022; 13():877428. PubMed ID: 35547576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bradycardic onset of spiral wave re-entry: structural substrates.
    Zemlin CW; Pertsov AM
    Europace; 2007 Nov; 9 Suppl 6():vi59-63. PubMed ID: 17959694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.