These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34485916)

  • 1. Fano-Resonant Hybrid Metamaterial for Enhanced Nonlinear Tunability and Hysteresis Behavior.
    Fan Y; He X; Zhang F; Cai W; Li C; Fu Q; Sydorchuk NV; Prosvirnin SL
    Research (Wash D C); 2021; 2021():9754083. PubMed ID: 34485916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase-Modulated Scattering Manipulation for Exterior Cloaking in Metal-Dielectric Hybrid Metamaterials.
    Zhang F; Li C; Fan Y; Yang R; Shen NH; Fu Q; Zhang W; Zhao Q; Zhou J; Koschny T; Soukoulis CM
    Adv Mater; 2019 Sep; 31(39):e1903206. PubMed ID: 31385386
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cross-Polarized Surface-Enhanced Infrared Spectroscopy by Fano-Resonant Asymmetric Metamaterials.
    Ishikawa A; Hara S; Tanaka T; Hayashi Y; Tsuruta K
    Sci Rep; 2017 Jun; 7(1):3205. PubMed ID: 28600570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple Sharp Fano Resonances in a Deep-Subwavelength Spherical Hyperbolic Metamaterial Cavity.
    Gu P; Guo Y; Chen J; Zhang Z; Yan Z; Liu F; Tang C; Du W; Chen Z
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Opt Express; 2014 Dec; 22(25):30889-98. PubMed ID: 25607038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear Fano-Resonant Dielectric Metasurfaces.
    Yang Y; Wang W; Boulesbaa A; Kravchenko II; Briggs DP; Puretzky A; Geohegan D; Valentine J
    Nano Lett; 2015 Nov; 15(11):7388-93. PubMed ID: 26501777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene Multiple Fano Resonances Based on Asymmetric Hybrid Metamaterial.
    Yan Z; Zhang Z; Du W; Wu W; Hu T; Yu Z; Gu P; Chen J; Tang C
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33276469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances.
    Wu C; Arju N; Kelp G; Fan JA; Dominguez J; Gonzales E; Tutuc E; Brener I; Shvets G
    Nat Commun; 2014 May; 5():3892. PubMed ID: 24861488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly strained compliant optical metamaterials with large frequency tunability.
    Pryce IM; Aydin K; Kelaita YA; Briggs RM; Atwater HA
    Nano Lett; 2010 Oct; 10(10):4222-7. PubMed ID: 20857941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Q-Factor Hybrid Metamaterial Waveguide Multi-Fano Resonance Sensor in the Visible Wavelength Range.
    Yang H; Chen Y; Liu M; Xiao G; Luo Y; Liu H; Li J; Yuan L
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34208583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EIA metamaterials based on hybrid metal/dielectric structures with dark-mode-enhanced absorption.
    Zhang F; Huang X; Cai W; Yang R; Fu Q; Fan Y; Hu Y; Qiu K; Zhang W; Li C; Li Q
    Opt Express; 2020 Jun; 28(12):17481-17489. PubMed ID: 32679955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultra-high
    Deng K; Gao Y; Gao Y; Wu T
    RSC Adv; 2024 Apr; 14(19):13646-13653. PubMed ID: 38665500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Realization of a near-infrared active Fano-resonant asymmetric metasurface by precisely controlling the phase transition of Ge
    Zhu W; Fan Y; Li C; Yang R; Yan S; Fu Q; Zhang F; Gu C; Li J
    Nanoscale; 2020 Apr; 12(16):8758-8767. PubMed ID: 32091041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal.
    Xu J; Fan Y; Yang R; Fu Q; Zhang F
    Opt Express; 2019 Feb; 27(3):2837-2843. PubMed ID: 30732315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials.
    Seren HR; Zhang J; Keiser GR; Maddox SJ; Zhao X; Fan K; Bank SR; Zhang X; Averitt RD
    Light Sci Appl; 2016 May; 5(5):e16078. PubMed ID: 30167165
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of terahertz all-dielectric metamaterials.
    He X; Liu F; Lin F; Shi W
    Opt Express; 2019 May; 27(10):13831-13844. PubMed ID: 31163842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fano-Resonance in Hybrid Metal-Graphene Metamaterial and Its Application as Mid-Infrared Plasmonic Sensor.
    Zhang J; Hong Q; Zou J; He Y; Yuan X; Zhu Z; Qin S
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32143457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-tunable Fano resonance in metal-dielectric multilayer structures.
    Hayashi S; Nesterenko DV; Rahmouni A; Ishitobi H; Inouye Y; Kawata S; Sekkat Z
    Sci Rep; 2016 Sep; 6():33144. PubMed ID: 27623741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable high Q-factor terahertz complementary graphene metamaterial.
    He X; Lin F; Liu F; Shi W
    Nanotechnology; 2018 Nov; 29(48):485205. PubMed ID: 30207547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.