These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 3448606)

  • 1. Normal modes of vibration in bovine pancreatic trypsin inhibitor and its mechanical property.
    Nishikawa T; Go N
    Proteins; 1987; 2(4):308-29. PubMed ID: 3448606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of a small globular protein in terms of low-frequency vibrational modes.
    Go N; Noguti T; Nishikawa T
    Proc Natl Acad Sci U S A; 1983 Jun; 80(12):3696-700. PubMed ID: 6574507
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Normal mode analysis of mouse epidermal growth factor: characterization of the harmonic motion.
    Ikura T; Go N
    Proteins; 1993 Aug; 16(4):423-36. PubMed ID: 8356035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deoxymyoglobin studied by the conformational normal mode analysis. II. The conformational change upon oxygenation.
    Seno Y; Go N
    J Mol Biol; 1990 Nov; 216(1):111-26. PubMed ID: 2231726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis of hierarchical multiple substates of a protein. I: Introduction.
    Noguti T; Go N
    Proteins; 1989; 5(2):97-103. PubMed ID: 2748581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis of hierarchical multiple substates of a protein. V: Nonlocal deformations.
    Noguti T; Go N
    Proteins; 1989; 5(2):132-8. PubMed ID: 2748577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of a protein and water molecules surrounding the protein: hydrogen-bonding between vibrating water molecules and a fluctuating protein.
    Yoshioki S
    J Comput Chem; 2002 Feb; 23(3):402-13. PubMed ID: 11908503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Determination and comparative analysis of the conformation of bovine pancreatic trypsin inhibitor and trypsin inhibitors E and K from the data of two-dimensional 1H-NMR spectroscopy].
    Sherman SA; Andrianov AM
    Mol Biol (Mosk); 1985; 19(5):1301-9. PubMed ID: 4079926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of hierarchical multiple substates of a protein. II: Monte Carlo simulation of native thermal fluctuations and energy minimization.
    Noguti T; Go N
    Proteins; 1989; 5(2):104-12. PubMed ID: 2748574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand-induced conformational change of a protein reproduced by a linear combination of displacement vectors obtained from normal mode analysis.
    Wako H; Endo S
    Biophys Chem; 2011 Dec; 159(2-3):257-66. PubMed ID: 21807453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collective motions in proteins: a covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations.
    Ichiye T; Karplus M
    Proteins; 1991; 11(3):205-17. PubMed ID: 1749773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harmonicity and anharmonicity in protein dynamics: a normal mode analysis and principal component analysis.
    Hayward S; Kitao A; Go N
    Proteins; 1995 Oct; 23(2):177-86. PubMed ID: 8592699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational deformation in deoxymyoglobin by hydrostatic pressure.
    Yamato T; Higo J; Seno Y; Go N
    Proteins; 1993 Aug; 16(4):327-40. PubMed ID: 8356029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor.
    Brooks B; Karplus M
    Proc Natl Acad Sci U S A; 1983 Nov; 80(21):6571-5. PubMed ID: 6579545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ProMode: a database of normal mode analyses on protein molecules with a full-atom model.
    Wako H; Kato M; Endo S
    Bioinformatics; 2004 Sep; 20(13):2035-43. PubMed ID: 15059828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Domain motions and the open-to-closed conformational transition of an enzyme: a normal mode analysis of S-adenosyl-L-homocysteine hydrolase.
    Wang M; Borchardt RT; Schowen RL; Kuczera K
    Biochemistry; 2005 May; 44(19):7228-39. PubMed ID: 15882061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivariate frequency domain analysis of protein dynamics.
    Matsunaga Y; Fuchigami S; Kidera A
    J Chem Phys; 2009 Mar; 130(12):124104. PubMed ID: 19334805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of solvent on collective motions in globular protein.
    Hayward S; Kitao A; Hirata F; Go N
    J Mol Biol; 1993 Dec; 234(4):1207-17. PubMed ID: 7505336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coherent nuclear wavepacket motions in ultrafast excited-state intramolecular proton transfer: sub-30-fs resolved pump-probe absorption spectroscopy of 10-hydroxybenzo[h]quinoline in solution.
    Takeuchi S; Tahara T
    J Phys Chem A; 2005 Nov; 109(45):10199-207. PubMed ID: 16833312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.