These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34486370)

  • 41. Microscopic significance of hydrophobic residues in the protein-stabilizing effect of trimethylamine N-oxide (TMAO).
    Yang Y; Mu Y; Li W
    Phys Chem Chem Phys; 2016 Aug; 18(32):22081-8. PubMed ID: 27147501
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A natural osmolyte trimethylamine N-oxide promotes assembly and bundling of the bacterial cell division protein, FtsZ and counteracts the denaturing effects of urea.
    Mukherjee A; Santra MK; Beuria TK; Panda D
    FEBS J; 2005 Jun; 272(11):2760-72. PubMed ID: 15943810
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Dynamics of TMAO and urea in the hydration shell of the protein SNase.
    Voloshin V; Smolin N; Geiger A; Winter R; Medvedev NN
    Phys Chem Chem Phys; 2019 Sep; 21(35):19469-19479. PubMed ID: 31461098
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of the osmolyte TMAO (Trimethylamine-N-oxide) on aqueous hydrophobic contact-pair interactions.
    Macdonald RD; Khajehpour M
    Biophys Chem; 2013 Dec; 184():101-7. PubMed ID: 24216065
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trimethylamine N-oxide stabilizes RNA tertiary structure and attenuates the denaturating effects of urea.
    Gluick TC; Yadav S
    J Am Chem Soc; 2003 Apr; 125(15):4418-9. PubMed ID: 12683801
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Are stabilizing osmolytes preferentially excluded from the protein surface? FTIR and MD studies.
    Bruździak P; Adamczak B; Kaczkowska E; Czub J; Stangret J
    Phys Chem Chem Phys; 2015 Sep; 17(35):23155-64. PubMed ID: 26278847
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactate dehydrogenase function: a test of the counteraction hypothesis.
    Baskakov I; Wang A; Bolen DW
    Biophys J; 1998 May; 74(5):2666-73. PubMed ID: 9591690
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Trimethylamine-N-oxide depletes urea in a peptide solvation shell.
    Nasralla M; Laurent H; Alderman OLG; Headen TF; Dougan L
    Proc Natl Acad Sci U S A; 2024 Apr; 121(14):e2317825121. PubMed ID: 38536756
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mitigating effects of osmolytes on the interactions between nanoparticles and supported lipid bilayer.
    Xia Z; Lau BLT
    J Colloid Interface Sci; 2020 May; 568():1-7. PubMed ID: 32070850
    [TBL] [Abstract][Full Text] [Related]  

  • 50. TMAO-Protein Preferential Interaction Profile Determines TMAO's Conditional In Vivo Compatibility.
    Hong J; Xiong S
    Biophys J; 2016 Nov; 111(9):1866-1875. PubMed ID: 27806268
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pressure, Peptides, and a Piezolyte: Structural Analysis of the Effects of Pressure and Trimethylamine-
    Folberth A; Polák J; Heyda J; van der Vegt NFA
    J Phys Chem B; 2020 Jul; 124(30):6508-6519. PubMed ID: 32615760
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Influence of polar co-solutes and salt on the hydration of lipid membranes.
    Wolde-Kidan A; Pham QD; Schlaich A; Loche P; Sparr E; Netz RR; Schneck E
    Phys Chem Chem Phys; 2019 Aug; 21(31):16989-17000. PubMed ID: 31343009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep sea osmolytes in action: their effect on protein-ligand binding under high pressure stress.
    Kamali A; Jahmidi-Azizi N; Oliva R; Winter R
    Phys Chem Chem Phys; 2022 Aug; 24(30):17966-17978. PubMed ID: 35775876
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Urea ameliorates trimethylamine N-oxide-Induced aggregation of intrinsically disordered α-casein protein: the other side of the urea-methylamine counteraction.
    Bhat MY; Mir IA; Ul Hussain M; Singh LR; Dar TA
    J Biomol Struct Dyn; 2023 May; 41(8):3659-3666. PubMed ID: 35315738
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The protein-stabilizing effects of TMAO in aqueous and non-aqueous conditions.
    Monhemi H; Hoang HN; Standley DM; Matsuda T; Housaindokht MR
    Phys Chem Chem Phys; 2022 Sep; 24(35):21178-21187. PubMed ID: 36039911
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Crucial importance of water structure modification on trimethylamine N-oxide counteracting effect at high pressure.
    Sarma R; Paul S
    J Phys Chem B; 2013 Jan; 117(2):677-89. PubMed ID: 23268746
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Measuring the interaction of urea and protein-stabilizing osmolytes with the nonpolar surface of hydroxypropylcellulose.
    Stanley C; Rau DC
    Biochemistry; 2008 Jun; 47(25):6711-8. PubMed ID: 18512956
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A study of the interaction between TMAO and urea in water using NMR spectroscopy.
    Nasralla M; Laurent H; Baker DL; Ries ME; Dougan L
    Phys Chem Chem Phys; 2022 Sep; 24(35):21216-21222. PubMed ID: 36040138
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A comparison of the counteracting effects of glycine betaine and TMAO on the activity of RNase A in aqueous urea solution.
    Samuelsson LM; Bedford JJ; Smith RA; Leader JP
    Comp Biochem Physiol A Mol Integr Physiol; 2005 May; 141(1):22-8. PubMed ID: 15886035
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ROLE OF UREA AND METHYLAMINES IN BUOYANCY OF ELASMOBRANCHS.
    Withers P; Hefter G; Pang TS
    J Exp Biol; 1994 Mar; 188(1):175-89. PubMed ID: 9317582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.