These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

547 related articles for article (PubMed ID: 34486519)

  • 1. Aorta smooth muscle-on-a-chip reveals impaired mitochondrial dynamics as a therapeutic target for aortic aneurysm in bicuspid aortic valve disease.
    Abudupataer M; Zhu S; Yan S; Xu K; Zhang J; Luo S; Ma W; Alam MF; Tang Y; Huang H; Chen N; Wang L; Yan G; Li J; Lai H; Wang C; Zhu K; Zhang W
    Elife; 2021 Sep; 10():. PubMed ID: 34486519
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patient-derived microphysiological model identifies the therapeutic potential of metformin for thoracic aortic aneurysm.
    Ma W; Zhang J; Liu S; Yan S; Xu K; Zhang YS; Abudupataer M; Ming Y; Zhu S; Xiang B; Zhou X; Luo S; Huang H; Tang Y; Zhang S; Xie Z; Chen N; Sun X; Li J; Lai H; Wang C; Zhu K; Zhang W
    EBioMedicine; 2022 Jul; 81():104080. PubMed ID: 35636318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smooth muscle cell phenotypic switching occurs independent of aortic dilation in bicuspid aortic valve-associated ascending aortas.
    Balint B; Bernstorff IGL; Schwab T; Schäfers HJ
    PLoS One; 2024; 19(7):e0306515. PubMed ID: 38954721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of Vascular Smooth Muscle Cells from Thoracic Aortic Aneurysms Reveals DNA Damage and Cell Cycle Arrest as Hallmarks in Bicuspid Aortic Valve Patients.
    Martin-Blazquez A; Martin-Lorenzo M; Santiago-Hernandez A; Heredero A; Donado A; Lopez JA; Anfaiha-Sanchez M; Ruiz-Jimenez R; Esteban V; Vazquez J; Aldamiz-Echevarria G; Alvarez-Llamas G
    J Proteome Res; 2024 Aug; 23(8):3012-3024. PubMed ID: 38594816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seno-destructive smooth muscle cells in the ascending aorta of patients with bicuspid aortic valve disease.
    Balint B; Yin H; Nong Z; Arpino JM; O'Neil C; Rogers SR; Randhawa VK; Fox SA; Chevalier J; Lee JJ; Chu MWA; Pickering JG
    EBioMedicine; 2019 May; 43():54-66. PubMed ID: 31078518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of immune-related signatures and pathogenesis differences between thoracic aortic aneurysm patients with bicuspid versus tricuspid valves via weighted gene co-expression network analysis.
    Huang M; Guan R; Qiu J; Gnamey AJE; Wang Y; Tian H; Sun H; Shi H; Sun W; Jia X; Wu J
    PLoS One; 2023; 18(10):e0292673. PubMed ID: 37883426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted gene expression analyses and immunohistology suggest a pro-proliferative state in tricuspid aortic valve-, and senescence and viral infections in bicuspid aortic valve-associated thoracic aortic aneurysms.
    Blunder S; Messner B; Scharinger B; Doppler C; Zeller I; Zierer A; Laufer G; Bernhard D
    Atherosclerosis; 2018 Apr; 271():111-119. PubMed ID: 29486395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gender-dependent aortic remodelling in patients with bicuspid aortic valve-associated thoracic aortic aneurysm.
    Lee J; Shen M; Parajuli N; Oudit GY; McMurtry MS; Kassiri Z
    J Mol Med (Berl); 2014 Sep; 92(9):939-49. PubMed ID: 24893666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of TAV- and BAV-associated thoracic aortic aneurysms--smooth muscle cell biology, expression profiling, and histological analyses.
    Blunder S; Messner B; Aschacher T; Zeller I; Türkcan A; Wiedemann D; Andreas M; Blüschke G; Laufer G; Schachner T; Bernhard D
    Atherosclerosis; 2012 Feb; 220(2):355-61. PubMed ID: 22178424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Functional properties of smooth muscle cells in ascending aortic aneurysm].
    Kostina DA; Voronkina IV; Smagina LV; Gavriliuk ND; Moiseeva OM; Irtiuga OB; Uspenskiĭ VE; Kostareva AA; Malashicheva AB
    Tsitologiia; 2013; 55(10):725-31. PubMed ID: 25509126
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a Human Aorta Smooth Muscle Cell Organ-On-A-Chip Model for Recapitulating Biomechanical Strain in the Aortic Wall.
    Abudupataer M; Yin X; Xiang B; Chen N; Yan S; Zhu S; Ming Y; Liu G; Zhou X; Lai H; Wang C; Zhu K; Li J
    J Vis Exp; 2022 Jul; (185):. PubMed ID: 35876556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves.
    Jiao J; Xiong W; Wang L; Yang J; Qiu P; Hirai H; Shao L; Milewicz D; Chen YE; Yang B
    EBioMedicine; 2016 Aug; 10():282-90. PubMed ID: 27394642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyamine concentration is increased in thoracic ascending aorta of patients with bicuspid aortic valve.
    Forte A; Grossi M; Bancone C; Cipollaro M; De Feo M; Hellstrand P; Persson L; Nilsson BO; Della Corte A
    Heart Vessels; 2018 Mar; 33(3):327-339. PubMed ID: 29147966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of MMP-2, MMP-9 and TIMP proteins in thoracic aortic aneurysm - comparison with and without bicuspid aortic valve: a meta-analysis.
    Rabkin SW
    Vasa; 2014 Nov; 43(6):433-42. PubMed ID: 25339161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells: Implications for bicuspid aortic valve-related aortopathy.
    Jiao J; Tian W; Qiu P; Norton EL; Wang MM; Chen YE; Yang B
    J Thorac Cardiovasc Surg; 2018 Aug; 156(2):515-522.e1. PubMed ID: 29653750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Focus on the unique mechanisms involved in thoracic aortic aneurysm formation in bicuspid aortic valve versus tricuspid aortic valve patients: clinical implications of a pilot study.
    Balistreri CR; Pisano C; Candore G; Maresi E; Codispoti M; Ruvolo G
    Eur J Cardiothorac Surg; 2013 Jun; 43(6):e180-6. PubMed ID: 23248206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defective NOTCH signalling drives smooth muscle cell death and differentiation in bicuspid aortic valve aortopathy.
    Harrison OJ; Torrens C; Salhiyyah K; Modi A; Moorjani N; Townsend PA; Ohri SK; Cagampang F
    Eur J Cardiothorac Surg; 2019 Jul; 56(1):117-125. PubMed ID: 30689881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deregulation of Notch1 pathway and circulating endothelial progenitor cell (EPC) number in patients with bicuspid aortic valve with and without ascending aorta aneurysm.
    Balistreri CR; Crapanzano F; Schirone L; Allegra A; Pisano C; Ruvolo G; Forte M; Greco E; Cavarretta E; Marullo AGM; Sciarretta S; Frati G
    Sci Rep; 2018 Sep; 8(1):13834. PubMed ID: 30218064
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Torres-Juan L; Rico Y; Fortuny E; Pons J; Ramos R; Santos-Simarro F; Asensio V; Martinez I; Heine-Suñer D
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basal and oxidative stress-induced expression of metallothionein is decreased in ascending aortic aneurysms of bicuspid aortic valve patients.
    Phillippi JA; Klyachko EA; Kenny JP; Eskay MA; Gorman RC; Gleason TG
    Circulation; 2009 May; 119(18):2498-506. PubMed ID: 19398671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.