These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 34486999)

  • 21. Sex differences in visual performance and postural sway precede sex differences in visually induced motion sickness.
    Koslucher F; Haaland E; Stoffregen TA
    Exp Brain Res; 2016 Jan; 234(1):313-22. PubMed ID: 26466829
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Idiosyncratic multisensory reweighting as the common cause for motion sickness susceptibility and adaptation to postural perturbation.
    Dida M; Cian C; Barraud PA; Guerraz M; Laboissière R
    PLoS One; 2021; 16(12):e0260863. PubMed ID: 34882734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Full-immersion virtual reality: Adverse effects related to static balance.
    Park S; Lee G
    Neurosci Lett; 2020 Aug; 733():134974. PubMed ID: 32294492
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Postural Control and Psychophysical State Following of Flight Simulator Session in Novice Pilots.
    Polak E; Ślugaj R; Gardzińska A
    Front Public Health; 2022; 10():788612. PubMed ID: 35186837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects.
    Munafo J; Diedrick M; Stoffregen TA
    Exp Brain Res; 2017 Mar; 235(3):889-901. PubMed ID: 27915367
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of physical driving experience on body movement and motion sickness among passengers in a virtual vehicle.
    Chang CH; Stoffregen TA; Cheng KB; Lei MK; Li CC
    Exp Brain Res; 2021 Feb; 239(2):491-500. PubMed ID: 33242143
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Postural activity and motion sickness during video game play in children and adults.
    Chang CH; Pan WW; Tseng LY; Stoffregen TA
    Exp Brain Res; 2012 Mar; 217(2):299-309. PubMed ID: 22210118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Motion sickness prevalence in school children.
    Henriques IF; Douglas de Oliveira DW; Oliveira-Ferreira F; Andrade PM
    Eur J Pediatr; 2014 Nov; 173(11):1473-82. PubMed ID: 24893949
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Real-time visual feedback about postural activity increases postural instability and visually induced motion sickness.
    Li R; Peterson N; Walter HJ; Rath R; Curry C; Stoffregen TA
    Gait Posture; 2018 Sep; 65():251-255. PubMed ID: 30558940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment.
    Kim HK; Park J; Choi Y; Choe M
    Appl Ergon; 2018 May; 69():66-73. PubMed ID: 29477332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Predicting vection and visually induced motion sickness based on spontaneous postural activity.
    Palmisano S; Arcioni B; Stapley PJ
    Exp Brain Res; 2018 Jan; 236(1):315-329. PubMed ID: 29181555
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Postural instability induced by virtual reality exposure: development of a certification protocol.
    Kennedy RS; Stanney KM
    Int J Hum Comput Interact; 1996; 8(1):25-47. PubMed ID: 11540107
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Static posture tests for the assessment of postural instability after virtual environment use.
    Cobb SV; Nichols SC
    Brain Res Bull; 1998 Nov; 47(5):459-64. PubMed ID: 10052574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects.
    Yokota Y; Aoki M; Mizuta K; Ito Y; Isu N
    Acta Otolaryngol; 2005 Mar; 125(3):280-5. PubMed ID: 15966698
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of virtual reality technology locomotive multi-sensory motion stimuli on a user simulator sickness and controller intuitiveness during a navigation task.
    Aldaba CN; Moussavi Z
    Med Biol Eng Comput; 2020 Jan; 58(1):143-154. PubMed ID: 31758315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. History of High Motion Sickness Susceptibility Predicts Vestibular Dysfunction Following Sport/Recreation-Related Concussion.
    Sufrinko AM; Kegel NE; Mucha A; Collins MW; Kontos AP
    Clin J Sport Med; 2019 Jul; 29(4):318-323. PubMed ID: 31241535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Postural sway in men and women during nauseogenic motion of the illuminated environment.
    Koslucher F; Munafo J; Stoffregen TA
    Exp Brain Res; 2016 Sep; 234(9):2709-20. PubMed ID: 27236456
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of immersion in virtual reality on postural control.
    Akizuki H; Uno A; Arai K; Morioka S; Ohyama S; Nishiike S; Tamura K; Takeda N
    Neurosci Lett; 2005 Apr; 379(1):23-6. PubMed ID: 15814192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of decades of physical driving on body movement and motion sickness during virtual driving.
    Stoffregen TA; Chang CH; Chen FC; Zeng WJ
    PLoS One; 2017; 12(11):e0187120. PubMed ID: 29121059
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Individual differences in the temporal progression of motion sickness and anxiety: the role of passengers' trait anxiety and motion sickness history.
    Stelling D; Hermes M; Huelmann G; Mittelstädt J; Niedermeier D; Schudlik K; Duda H
    Ergonomics; 2021 Aug; 64(8):1062-1071. PubMed ID: 33566736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.