These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 34487337)
21. Palmitoylation at Residue C221 of Japanese Encephalitis Virus NS2A Protein Contributes to Viral Replication Efficiency and Virulence. Ma X; Xia Q; Liu K; Wu Z; Li C; Xiao C; Dong N; Hameed M; Anwar MN; Li Z; Shao D; Li B; Qiu Y; Wei J; Ma Z J Virol; 2023 Jun; 97(6):e0038223. PubMed ID: 37289075 [TBL] [Abstract][Full Text] [Related]
22. Axl Alleviates Neuroinflammation and Delays Japanese Encephalitis Progression in Mice. Wang ZY; Zhen ZD; Fan DY; Wang PG; An J Virol Sin; 2021 Aug; 36(4):667-677. PubMed ID: 33534086 [TBL] [Abstract][Full Text] [Related]
23. GRP78 Is an Important Host Factor for Japanese Encephalitis Virus Entry and Replication in Mammalian Cells. Nain M; Mukherjee S; Karmakar SP; Paton AW; Paton JC; Abdin MZ; Basu A; Kalia M; Vrati S J Virol; 2017 Mar; 91(6):. PubMed ID: 28053106 [TBL] [Abstract][Full Text] [Related]
24. Antibodies generated by immunization with the NS1 protein of West Nile virus confer partial protection against lethal Japanese encephalitis virus challenge. Sun E; Zhao J; TaoYang ; Xu Q; Qin Y; Wang W; Wei P; Wu D Vet Microbiol; 2013 Sep; 166(1-2):145-53. PubMed ID: 23834965 [TBL] [Abstract][Full Text] [Related]
25. Gas6 attenuates lipopolysaccharide‑induced TNF‑α expression and apoptosis in H9C2 cells through NF‑κB and MAPK inhibition via the Axl/PI3K/Akt pathway. Li M; Ye J; Zhao G; Hong G; Hu X; Cao K; Wu Y; Lu Z Int J Mol Med; 2019 Sep; 44(3):982-994. PubMed ID: 31524235 [TBL] [Abstract][Full Text] [Related]
26. Evaluation of the protective ability of plasma from Japanese individuals against mosquito-borne viral infections. Shinohara N; Owada T; Matsumoto C; Uchida S; Nagai T; Satake M; Tadokoro K Trans R Soc Trop Med Hyg; 2017 Sep; 111(9):393-401. PubMed ID: 29294131 [TBL] [Abstract][Full Text] [Related]
27. Membrane permeabilization by small hydrophobic nonstructural proteins of Japanese encephalitis virus. Chang YS; Liao CL; Tsao CH; Chen MC; Liu CI; Chen LK; Lin YL J Virol; 1999 Aug; 73(8):6257-64. PubMed ID: 10400716 [TBL] [Abstract][Full Text] [Related]
28. Capsid, membrane and NS3 are the major viral proteins involved in autophagy induced by Japanese encephalitis virus. Wang X; Hou L; Du J; Zhou L; Ge X; Guo X; Yang H Vet Microbiol; 2015 Aug; 178(3-4):217-29. PubMed ID: 26043943 [TBL] [Abstract][Full Text] [Related]
29. Japanese Encephalitis Virus NS1' Protein Interacts with Host CDK1 Protein to Regulate Antiviral Response. Li Q; Zhou D; Jia F; Zhang L; Ashraf U; Li Y; Duan H; Song Y; Chen H; Cao S; Ye J Microbiol Spectr; 2021 Dec; 9(3):e0166121. PubMed ID: 34756071 [TBL] [Abstract][Full Text] [Related]
30. Flavivirus activates phosphatidylinositol 3-kinase signaling to block caspase-dependent apoptotic cell death at the early stage of virus infection. Lee CJ; Liao CL; Lin YL J Virol; 2005 Jul; 79(13):8388-99. PubMed ID: 15956583 [TBL] [Abstract][Full Text] [Related]
31. Biology of Zika Virus Infection in Human Skin Cells. Hamel R; Dejarnac O; Wichit S; Ekchariyawat P; Neyret A; Luplertlop N; Perera-Lecoin M; Surasombatpattana P; Talignani L; Thomas F; Cao-Lormeau VM; Choumet V; Briant L; Desprès P; Amara A; Yssel H; Missé D J Virol; 2015 Sep; 89(17):8880-96. PubMed ID: 26085147 [TBL] [Abstract][Full Text] [Related]
32. N-methylisatin-beta-thiosemicarbazone derivative (SCH 16) is an inhibitor of Japanese encephalitis virus infection in vitro and in vivo. Sebastian L; Desai A; Shampur MN; Perumal Y; Sriram D; Vasanthapuram R Virol J; 2008 May; 5():64. PubMed ID: 18498627 [TBL] [Abstract][Full Text] [Related]
33. Critical role of lipid rafts in virus entry and activation of phosphoinositide 3' kinase/Akt signaling during early stages of Japanese encephalitis virus infection in neural stem/progenitor cells. Das S; Chakraborty S; Basu A J Neurochem; 2010 Oct; 115(2):537-49. PubMed ID: 20722967 [TBL] [Abstract][Full Text] [Related]
34. Screening of FDA-Approved Drugs for Inhibitors of Japanese Encephalitis Virus Infection. Wang S; Liu Y; Guo J; Wang P; Zhang L; Xiao G; Wang W J Virol; 2017 Nov; 91(21):. PubMed ID: 28814523 [TBL] [Abstract][Full Text] [Related]
35. Targeting of the Nasal Mucosa by Japanese Encephalitis Virus for Non-Vector-Borne Transmission. García-Nicolás O; Braun RO; Milona P; Lewandowska M; Dijkman R; Alves MP; Summerfield A J Virol; 2018 Dec; 92(24):. PubMed ID: 30282716 [TBL] [Abstract][Full Text] [Related]
36. A MicroRNA Screen Identifies the Wnt Signaling Pathway as a Regulator of the Interferon Response during Flavivirus Infection. Smith JL; Jeng S; McWeeney SK; Hirsch AJ J Virol; 2017 Apr; 91(8):. PubMed ID: 28148804 [TBL] [Abstract][Full Text] [Related]
37. Antiviral effect of melatonin on Japanese encephalitis virus infection involves inhibition of neuronal apoptosis and neuroinflammation in SH-SY5Y cells. Kitidee K; Samutpong A; Pakpian N; Wisitponchai T; Govitrapong P; Reiter RJ; Wongchitrat P Sci Rep; 2023 Apr; 13(1):6063. PubMed ID: 37055489 [TBL] [Abstract][Full Text] [Related]
39. Proteomic analyses identify intracellular targets for Japanese encephalitis virus nonstructural protein 1 (NS1). Wang P; Liu X; Li Q; Wang J; Ruan W Virus Res; 2021 Sep; 302():198495. PubMed ID: 34175344 [TBL] [Abstract][Full Text] [Related]
40. Recovery of a chemically synthesized Japanese encephalitis virus reveals two critical adaptive mutations in NS2B and NS4A. Li XD; Li XF; Ye HQ; Deng CL; Ye Q; Shan C; Shang BD; Xu LL; Li SH; Cao SB; Yuan ZM; Shi PY; Qin CF; Zhang B J Gen Virol; 2014 Apr; 95(Pt 4):806-815. PubMed ID: 24362961 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]