These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 34487506)

  • 21. Deep Reinforcement Learning for End-to-End Local Motion Planning of Autonomous Aerial Robots in Unknown Outdoor Environments: Real-Time Flight Experiments.
    Doukhi O; Lee DJ
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Koopman Operator-Based Knowledge-Guided Reinforcement Learning for Safe Human-Robot Interaction.
    Sinha A; Wang Y
    Front Robot AI; 2022; 9():779194. PubMed ID: 35783024
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Risk-based implementation of COLREGs for autonomous surface vehicles using deep reinforcement learning.
    Heiberg A; Larsen TN; Meyer E; Rasheed A; San O; Varagnolo D
    Neural Netw; 2022 Aug; 152():17-33. PubMed ID: 35500457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-Time Online Goal Recognition in Continuous Domains via Deep Reinforcement Learning.
    Fang Z; Chen D; Zeng Y; Wang T; Xu K
    Entropy (Basel); 2023 Oct; 25(10):. PubMed ID: 37895536
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward a Brain-Inspired System: Deep Recurrent Reinforcement Learning for a Simulated Self-Driving Agent.
    Chen J; Chen J; Zhang R; Hu X
    Front Neurorobot; 2019; 13():40. PubMed ID: 31316366
    [TBL] [Abstract][Full Text] [Related]  

  • 26. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.
    Xie J; Peng X; Wang H; Niu W; Zheng X
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How to train a self-driving vehicle: On the added value (or lack thereof) of curriculum learning and replay buffers.
    Mahmoud S; Billing E; Svensson H; Thill S
    Front Artif Intell; 2023; 6():1098982. PubMed ID: 36762255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distributed Non-Communicating Multi-Robot Collision Avoidance via Map-Based Deep Reinforcement Learning.
    Chen G; Yao S; Ma J; Pan L; Chen Y; Xu P; Ji J; Chen X
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32867080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.
    Frémaux N; Sprekeler H; Gerstner W
    PLoS Comput Biol; 2013 Apr; 9(4):e1003024. PubMed ID: 23592970
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep reinforcement learning for automated radiation adaptation in lung cancer.
    Tseng HH; Luo Y; Cui S; Chien JT; Ten Haken RK; Naqa IE
    Med Phys; 2017 Dec; 44(12):6690-6705. PubMed ID: 29034482
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Critical Period for Robust Curriculum-Based Deep Reinforcement Learning of Sequential Action in a Robot Arm.
    de Kleijn R; Sen D; Kachergis G
    Top Cogn Sci; 2022 Apr; 14(2):311-326. PubMed ID: 35005844
    [TBL] [Abstract][Full Text] [Related]  

  • 32. From Semantics to Execution: Integrating Action Planning With Reinforcement Learning for Robotic Causal Problem-Solving.
    Eppe M; Nguyen PDH; Wermter S
    Front Robot AI; 2019; 6():123. PubMed ID: 33501138
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reinforcement Learning Approaches in Social Robotics.
    Akalin N; Loutfi A
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cooperative Object Transportation Using Curriculum-Based Deep Reinforcement Learning.
    Eoh G; Park TH
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A deep reinforcement transfer convolutional neural network for rolling bearing fault diagnosis.
    Wu Z; Jiang H; Liu S; Wang R
    ISA Trans; 2022 Oct; 129(Pt B):505-524. PubMed ID: 35272840
    [TBL] [Abstract][Full Text] [Related]  

  • 36. End-to-End Active Object Tracking and Its Real-World Deployment via Reinforcement Learning.
    Luo W; Sun P; Zhong F; Liu W; Zhang T; Wang Y
    IEEE Trans Pattern Anal Mach Intell; 2020 Jun; 42(6):1317-1332. PubMed ID: 30762532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Limited parameter denoising for low-dose X-ray computed tomography using deep reinforcement learning.
    Patwari M; Gutjahr R; Raupach R; Maier A
    Med Phys; 2022 Jul; 49(7):4540-4553. PubMed ID: 35362172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transfer Learning in Deep Reinforcement Learning: A Survey.
    Zhu Z; Lin K; Jain AK; Zhou J
    IEEE Trans Pattern Anal Mach Intell; 2023 Nov; 45(11):13344-13362. PubMed ID: 37402188
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning Improvement Heuristics for Solving Routing Problems.
    Wu Y; Song W; Cao Z; Zhang J; Lim A
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):5057-5069. PubMed ID: 33793405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep reinforcement learning and its applications in medical imaging and radiation therapy: a survey.
    Xu L; Zhu S; Wen N
    Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36270582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.