These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 34487506)

  • 41. Countering a Drone in a 3D Space: Analyzing Deep Reinforcement Learning Methods.
    Çetin E; Barrado C; Pastor E
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433460
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optimizing the Sensor Placement for Foot Plantar Center of Pressure without Prior Knowledge Using Deep Reinforcement Learning.
    Lin CW; Ruan SJ; Hsu WC; Tu YW; Han SL
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33003510
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stage-Wise Learning of Reaching Using Little Prior Knowledge.
    de La Bourdonnaye F; Teulière C; Triesch J; Chateau T
    Front Robot AI; 2018; 5():110. PubMed ID: 33500989
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparing Deep Reinforcement Learning Algorithms' Ability to Safely Navigate Challenging Waters.
    Larsen TN; Teigen HØ; Laache T; Varagnolo D; Rasheed A
    Front Robot AI; 2021; 8():738113. PubMed ID: 34589522
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multi-Agent Deep Reinforcement Learning for Multi-Robot Applications: A Survey.
    Orr J; Dutta A
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050685
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Combining STDP and binary networks for reinforcement learning from images and sparse rewards.
    Chevtchenko SF; Ludermir TB
    Neural Netw; 2021 Dec; 144():496-506. PubMed ID: 34601362
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Speeding Task Allocation Search for Reconfigurations in Adaptive Distributed Embedded Systems Using Deep Reinforcement Learning.
    Rotaeche R; Ballesteros A; Proenza J
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617145
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual-Arm Robot Trajectory Planning Based on Deep Reinforcement Learning under Complex Environment.
    Tang W; Cheng C; Ai H; Chen L
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457870
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Continuous-Time Fitted Value Iteration for Robust Policies.
    Lutter M; Belousov B; Mannor S; Fox D; Garg A; Peters J
    IEEE Trans Pattern Anal Mach Intell; 2023 May; 45(5):5534-5548. PubMed ID: 36260585
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optimization of Neuroprosthetic Vision via End-to-End Deep Reinforcement Learning.
    Küçükoğlu B; Rueckauer B; Ahmad N; van Steveninck JR; Güçlü U; van Gerven M
    Int J Neural Syst; 2022 Nov; 32(11):2250052. PubMed ID: 36328967
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Navigation in Unknown Dynamic Environments Based on Deep Reinforcement Learning.
    Zeng J; Ju R; Qin L; Hu Y; Yin Q; Hu C
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31491927
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dexterous Manipulation for Multi-Fingered Robotic Hands With Reinforcement Learning: A Review.
    Yu C; Wang P
    Front Neurorobot; 2022; 16():861825. PubMed ID: 35548780
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Deep Reinforcement Learning Controller for 3D Path Following and Collision Avoidance by Autonomous Underwater Vehicles.
    Havenstrøm ST; Rasheed A; San O
    Front Robot AI; 2020; 7():566037. PubMed ID: 33585570
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-robot task allocation in e-commerce RMFS based on deep reinforcement learning.
    Yuan R; Dou J; Li J; Wang W; Jiang Y
    Math Biosci Eng; 2023 Jan; 20(2):1903-1918. PubMed ID: 36899514
    [TBL] [Abstract][Full Text] [Related]  

  • 55. End-to-End Hierarchical Reinforcement Learning With Integrated Subgoal Discovery.
    Pateria S; Subagdja B; Tan AH; Quek C
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7778-7790. PubMed ID: 34156954
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Average reward rates enable motivational transfer across independent reinforcement learning tasks.
    Aberg KC; Paz R
    Front Behav Neurosci; 2022; 16():1041566. PubMed ID: 36439970
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Knowledge Reuse of Multi-Agent Reinforcement Learning in Cooperative Tasks.
    Shi D; Tong J; Liu Y; Fan W
    Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455134
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Learning high-speed flight in the wild.
    Loquercio A; Kaufmann E; Ranftl R; Müller M; Koltun V; Scaramuzza D
    Sci Robot; 2021 Oct; 6(59):eabg5810. PubMed ID: 34613820
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reinforcement Learning for Improving Agent Design.
    Ha D
    Artif Life; 2019; 25(4):352-365. PubMed ID: 31697584
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Formation Control With Collision Avoidance Through Deep Reinforcement Learning Using Model-Guided Demonstration.
    Sui Z; Pu Z; Yi J; Wu S
    IEEE Trans Neural Netw Learn Syst; 2021 Jun; 32(6):2358-2372. PubMed ID: 32673195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.