These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 34487506)

  • 61. General Purpose Low-Level Reinforcement Learning Control for Multi-Axis Rotor Aerial Vehicles.
    Pi CH; Dai YW; Hu KC; Cheng S
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283119
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adaptive algorithms for shaping behavior.
    Tong WL; Iyer A; Murthy VN; Reddy G
    bioRxiv; 2023 Dec; ():. PubMed ID: 38106232
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Exploiting redundancy for flexible behavior: unsupervised learning in a modular sensorimotor control architecture.
    Butz MV; Herbort O; Hoffmann J
    Psychol Rev; 2007 Oct; 114(4):1015-1046. PubMed ID: 17907871
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Overcoming Challenges of Applying Reinforcement Learning for Intelligent Vehicle Control.
    Pina R; Tibebu H; Hook J; De Silva V; Kondoz A
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883832
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Personalized Retrogress-Resilient Federated Learning Toward Imbalanced Medical Data.
    Chen Z; Yang C; Zhu M; Peng Z; Yuan Y
    IEEE Trans Med Imaging; 2022 Dec; 41(12):3663-3674. PubMed ID: 35853071
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Task Learning Over Multi-Day Recording via Internally Rewarded Reinforcement Learning Based Brain Machine Interfaces.
    Shen X; Zhang X; Huang Y; Chen S; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3089-3099. PubMed ID: 33232240
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Track-to-Learn: A general framework for tractography with deep reinforcement learning.
    Théberge A; Desrosiers C; Descoteaux M; Jodoin PM
    Med Image Anal; 2021 Aug; 72():102093. PubMed ID: 34023562
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Deep Reinforcement Learning-Based End-to-End Control for UAV Dynamic Target Tracking.
    Zhao J; Liu H; Sun J; Wu K; Cai Z; Ma Y; Wang Y
    Biomimetics (Basel); 2022 Nov; 7(4):. PubMed ID: 36412725
    [TBL] [Abstract][Full Text] [Related]  

  • 69. End-to-End AUV Motion Planning Method Based on Soft Actor-Critic.
    Yu X; Sun Y; Wang X; Zhang G
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502781
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Model-based reinforcement learning with dimension reduction.
    Tangkaratt V; Morimoto J; Sugiyama M
    Neural Netw; 2016 Dec; 84():1-16. PubMed ID: 27639719
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Learning to reach by reinforcement learning using a receptive field based function approximation approach with continuous actions.
    Tamosiunaite M; Asfour T; Wörgötter F
    Biol Cybern; 2009 Mar; 100(3):249-60. PubMed ID: 19229556
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Estimating Reward Function from Medial Prefrontal Cortex Cortical Activity using Inverse Reinforcement Learning.
    Tan J; Shen X; Zhang X; Song Z; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():3346-3349. PubMed ID: 36086257
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Towards a Broad-Persistent Advising Approach for Deep Interactive Reinforcement Learning in Robotic Environments.
    Nguyen HS; Cruz F; Dazeley R
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904885
    [TBL] [Abstract][Full Text] [Related]  

  • 74. An Efficient Semi-Supervised Framework with Multi-Task and Curriculum Learning for Medical Image Segmentation.
    Wang K; Wang Y; Zhan B; Yang Y; Zu C; Wu X; Zhou J; Nie D; Zhou L
    Int J Neural Syst; 2022 Sep; 32(9):2250043. PubMed ID: 35912583
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Optic flow cues guide flight in birds.
    Bhagavatula PS; Claudianos C; Ibbotson MR; Srinivasan MV
    Curr Biol; 2011 Nov; 21(21):1794-9. PubMed ID: 22036184
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Object recognition in medical images via anatomy-guided deep learning.
    Jin C; Udupa JK; Zhao L; Tong Y; Odhner D; Pednekar G; Nag S; Lewis S; Poole N; Mannikeri S; Govindasamy S; Singh A; Camaratta J; Owens S; Torigian DA
    Med Image Anal; 2022 Oct; 81():102527. PubMed ID: 35830745
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Variational Information Bottleneck Regularized Deep Reinforcement Learning for Efficient Robotic Skill Adaptation.
    Xiang G; Dian S; Du S; Lv Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679561
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Reward prediction errors, not sensory prediction errors, play a major role in model selection in human reinforcement learning.
    Wu Y; Morita M; Izawa J
    Neural Netw; 2022 Oct; 154():109-121. PubMed ID: 35872516
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Curriculum learning with Hindsight Experience Replay for sequential object manipulation tasks.
    Manela B; Biess A
    Neural Netw; 2022 Jan; 145():260-270. PubMed ID: 34781214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.