BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34487766)

  • 1. Inactivation of SARS-CoV-2 by β-propiolactone causes aggregation of viral particles and loss of antigenic potential.
    Gupta D; Parthasarathy H; Sah V; Tandel D; Vedagiri D; Reddy S; Harshan KH
    Virus Res; 2021 Nov; 305():198555. PubMed ID: 34487766
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Architecture of Inactivated SARS-CoV-2 with Postfusion Spikes Revealed by Cryo-EM and Cryo-ET.
    Liu C; Mendonça L; Yang Y; Gao Y; Shen C; Liu J; Ni T; Ju B; Liu C; Tang X; Wei J; Ma X; Zhu Y; Liu W; Xu S; Liu Y; Yuan J; Wu J; Liu Z; Zhang Z; Liu L; Wang P; Zhang P
    Structure; 2020 Nov; 28(11):1218-1224.e4. PubMed ID: 33058760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Physical and Biochemical Characterizations of SARS-CoV-2 Inactivated by Different Treatments.
    Yu S; Wei Y; Liang H; Ji W; Chang Z; Xie S; Wang Y; Li W; Liu Y; Wu H; Li J; Wang H; Yang X
    Viruses; 2022 Aug; 14(9):. PubMed ID: 36146745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical and antigenic characterization of the structural proteins and their post-translational modifications in purified SARS-CoV-2 virions of an inactivated vaccine candidate.
    Zhang XY; Guo J; Wan X; Zhou JG; Jin WP; Lu J; Wang WH; Yang AN; Liu DX; Shi ZL; Yuan ZM; Li XG; Meng SL; Duan K; Wang ZJ; Yang XM; Shen S
    Emerg Microbes Infect; 2020 Dec; 9(1):2653-2662. PubMed ID: 33232205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Immunoreactivity Properties of the SARS-CoV-2 Spike Protein upon the Development of an Inactivated Vaccine.
    Kordyukova LV; Moiseenko AV; Serebryakova MV; Shuklina MA; Sergeeva MV; Lioznov DA; Shanko AV
    Viruses; 2023 Feb; 15(2):. PubMed ID: 36851694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-Propiolactone (BPL)-inactivation of SARS-Co-V-2: In vitro validation with focus on saliva from COVID-19 patients for scent dog training.
    Pilchová V; Prajeeth CK; Jendrny P; Twele F; Meller S; Pink I; Fathi A; Addo MM; Volk HA; Osterhaus A; von Köckritz-Blickwede M; Schulz C
    J Virol Methods; 2023 Jul; 317():114733. PubMed ID: 37068591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anti-SARS-CoV-2 IgG antibody response among Indian COVID-19 patients using β-propiolactone-inactivated, whole virus-based indirect ELISA.
    Kulkarni R; Patil HP; Palkar S; Lalwani S; Mishra AC; Arankalle V
    J Virol Methods; 2021 Jan; 287():113996. PubMed ID: 33126149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the beta-propiolactone sensitivity and optimization of inactivation methods for human influenza H3N2 virus.
    Sasaki Y; Yoshino N; Sato S; Muraki Y
    J Virol Methods; 2016 Sep; 235():105-111. PubMed ID: 27142111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of SARS-CoV-2 inactivation by different chemical reagents on the humoral response evaluated in a murine model.
    de Castro Barbosa E; de Souza Andrade A; Duarte MM; Faria G; de Melo Iani FC; Ataide ACZ; Cunha LM; Duarte CG; Fialho SL; Caldas S
    Mol Immunol; 2022 Jul; 147():199-208. PubMed ID: 35644072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Beta-Propiolactone Inactivation of Coxsackievirus A16 Induces Structural Alteration and Surface Modification of Viral Capsids.
    Fan C; Ye X; Ku Z; Kong L; Liu Q; Xu C; Cong Y; Huang Z
    J Virol; 2017 Apr; 91(8):. PubMed ID: 28148783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization of β-propiolactone inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) particles.
    Bagrov DV; Glukhov GS; Moiseenko AV; Karlova MG; Litvinov DS; Zaitsev PА; Kozlovskaya LI; Shishova AA; Kovpak AA; Ivin YY; Piniaeva AN; Oksanich AS; Volok VP; Osolodkin DI; Ishmukhametov AA; Egorov AM; Shaitan KV; Kirpichnikov MP; Sokolova OS
    Microsc Res Tech; 2022 Feb; 85(2):562-569. PubMed ID: 34498784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Conditions for SARS-CoV cultivation and inactivation].
    Zhang SL; Ma LJ; Tian G; Zhang LY; Zhang XY; Wang XL
    Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi; 2005 Jun; 19(2):135-7. PubMed ID: 16027779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of heterosubtypic cross-protection against influenza by a whole inactivated virus vaccine: the role of viral membrane fusion activity.
    Budimir N; Huckriede A; Meijerhof T; Boon L; Gostick E; Price DA; Wilschut J; de Haan A
    PLoS One; 2012; 7(1):e30898. PubMed ID: 22303469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inactivated or damaged? Comparing the effect of inactivation methods on influenza virions to optimize vaccine production.
    Herrera-Rodriguez J; Signorazzi A; Holtrop M; de Vries-Idema J; Huckriede A
    Vaccine; 2019 Mar; 37(12):1630-1637. PubMed ID: 30765167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of chemical inactivation of bovine viral diarrhea virus with beta-propiolactone and binary ethyleneimine on plasma proteins and coagulation factors.
    Refaie FM; Esmat AY; Mohamed AF; Mohamed WA
    Egypt J Immunol; 2004; 11(2):9-20. PubMed ID: 16734113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examination of the effects of virus inactivation methods on the induction of antibody- and cell-mediated immune responses against whole inactivated H9N2 avian influenza virus vaccines in chickens.
    Astill J; Alkie T; Yitbarek A; Taha-Abdelaziz K; Bavananthasivam J; Nagy É; Petrik JJ; Sharif S
    Vaccine; 2018 Jun; 36(27):3908-3916. PubMed ID: 29853199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Immunogenicity and protective efficacy in mice and hamsters of a β-propiolactone inactivated whole virus SARS-CoV vaccine.
    Roberts A; Lamirande EW; Vogel L; Baras B; Goossens G; Knott I; Chen J; Ward JM; Vassilev V; Subbarao K
    Viral Immunol; 2010 Oct; 23(5):509-19. PubMed ID: 20883165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SARS-CoV-2 Proteins: Are They Useful as Targets for COVID-19 Drugs and Vaccines?
    Mohammed MEA
    Curr Mol Med; 2022; 22(1):50-66. PubMed ID: 33622224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Propagation, Inactivation, and Safety Testing of SARS-CoV-2.
    Jureka AS; Silvas JA; Basler CF
    Viruses; 2020 Jun; 12(6):. PubMed ID: 32517266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gamma-irradiated SARS-CoV-2 vaccine candidate, OZG-38.61.3, confers protection from SARS-CoV-2 challenge in human ACEII-transgenic mice.
    Turan RD; Tastan C; Dilek Kancagi D; Yurtsever B; Sir Karakus G; Ozer S; Abanuz S; Cakirsoy D; Tumentemur G; Demir S; Seyis U; Kuzay R; Elek M; Kocaoglu ME; Ertop G; Arbak S; Acikel Elmas M; Hemsinlioglu C; Hatirnaz Ng O; Akyoney S; Sahin I; Kayhan CK; Tokat F; Akpinar G; Kasap M; Kocagoz AS; Ozbek U; Telci D; Sahin F; Yalcin K; Ratip S; Ince U; Ovali E
    Sci Rep; 2021 Aug; 11(1):15799. PubMed ID: 34349145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.