BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34487966)

  • 1. Improving the anode performance of microbial fuel cell with carbon nanotubes supported cobalt phosphate catalyst.
    Yang Q; Luo D; Liu X; Guo T; Zhao X; Zheng X; Wang W
    Bioelectrochemistry; 2021 Dec; 142():107941. PubMed ID: 34487966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving the power generation of microbial fuel cells by modifying the anode with single-wall carbon nanohorns.
    Yang J; Cheng S; Sun Y; Li C
    Biotechnol Lett; 2017 Oct; 39(10):1515-1520. PubMed ID: 28664313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells.
    Deng L; Zhou M; Liu C; Liu L; Liu C; Dong S
    Talanta; 2010 Apr; 81(1-2):444-8. PubMed ID: 20188944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-hydroxyapatite/carbon nanotube: An excellent anode modifying material for improving the power output and diclofenac sodium removal of microbial fuel cells.
    Guo W; Chen Y; Cui L; Xu N; Wang M; Sun Y; Yan Y
    Bioelectrochemistry; 2023 Dec; 154():108523. PubMed ID: 37478753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting the anode performance of microbial fuel cells with a bacteria-derived biological iron oxide/carbon nanocomposite catalyst.
    Yang Q; Yang S; Liu G; Zhou B; Yu X; Yin Y; Yang J; Zhao H
    Chemosphere; 2021 Apr; 268():128800. PubMed ID: 33143885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction and performance evaluation of mediator-less microbial fuel cell using carbon nanotubes as an anode material.
    Roh SH; Kim SI
    J Nanosci Nanotechnol; 2012 May; 12(5):4252-5. PubMed ID: 22852384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells.
    Zhang L; He W; Yang J; Sun J; Li H; Han B; Zhao S; Shi Y; Feng Y; Tang Z; Liu S
    Biosens Bioelectron; 2018 Dec; 122():217-223. PubMed ID: 30265972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell.
    Wang Y; Li B; Cui D; Xiang X; Li W
    Biosens Bioelectron; 2014 Jan; 51():349-55. PubMed ID: 23994845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.
    Xie X; Hu L; Pasta M; Wells GF; Kong D; Criddle CS; Cui Y
    Nano Lett; 2011 Jan; 11(1):291-6. PubMed ID: 21158405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified conductive polyaniline-carbon nanotube composite electrodes for bioelectricity generation and waste remediation.
    Yellappa M; Sravan JS; Sarkar O; Reddy YVR; Mohan SV
    Bioresour Technol; 2019 Jul; 284():148-154. PubMed ID: 30928826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced electrical contact of microbes using Fe(3)O(4)/CNT nanocomposite anode in mediator-less microbial fuel cell.
    Park IH; Christy M; Kim P; Nahm KS
    Biosens Bioelectron; 2014 Aug; 58():75-80. PubMed ID: 24613972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promoting the anode performance of microbial fuel cells with nano-molybdenum disulfide/carbon nanotubes composite catalyst.
    Guo W; Li X; Cui L; Li Y; Zhang H; Ni T
    Bioprocess Biosyst Eng; 2022 Jan; 45(1):159-170. PubMed ID: 34642822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Fabrication of Graphene-Containing Foam as a High-Performance Anode for Microbial Fuel Cells.
    Yang L; Wang S; Peng S; Jiang H; Zhang Y; Deng W; Tan Y; Ma M; Xie Q
    Chemistry; 2015 Jul; 21(30):10634-8. PubMed ID: 26095648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron cobalt-doped carbon nanofibers anode to simultaneously boost bioelectrocatalysis and direct electron transfer in microbial fuel cells: Characterization, performance, and mechanism.
    Jiang N; Song J; Yan M; Hu Y; Wang M; Liu Y; Huang M
    Bioresour Technol; 2023 Jan; 367():128230. PubMed ID: 36332869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimetal-organic framework-derived porous CoFe
    Ren T; Liu Y; Shi C; Li C
    J Colloid Interface Sci; 2023 Aug; 643():428-436. PubMed ID: 37086532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified cobalt-manganese oxide-coated carbon felt anodes: an available method to improve the performance of microbial fuel cells.
    Yang L; Wang A; Wen Q; Chen Y
    Bioprocess Biosyst Eng; 2021 Dec; 44(12):2615-2625. PubMed ID: 34477974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell.
    Hindatu Y; Annuar MSM; Subramaniam R; Gumel AM
    Bioprocess Biosyst Eng; 2017 Jun; 40(6):919-928. PubMed ID: 28341913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different types of carbon nanotube-based anodes to improve microbial fuel cell performance.
    Thepsuparungsikul N; Ng TC; Lefebvre O; Ng HY
    Water Sci Technol; 2014; 69(9):1900-10. PubMed ID: 24804666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Layer-by-layer self-assembled carbon nanotube electrode for microbial fuel cells application.
    Roh SH
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4158-61. PubMed ID: 23862465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-walled carbon nanotubes as electrode material for microbial fuel cells.
    Thepsuparungsikul N; Phonthamachai N; Ng HY
    Water Sci Technol; 2012; 65(7):1208-14. PubMed ID: 22437017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.