These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34487983)

  • 1. Automatic annotation of cervical vertebrae in videofluoroscopy images via deep learning.
    Zhang Z; Mao S; Coyle J; Sejdić E
    Med Image Anal; 2021 Dec; 74():102218. PubMed ID: 34487983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a multiview architecture for automatic vertebral labeling of palliative radiotherapy simulation CT images.
    Netherton TJ; Rhee DJ; Cardenas CE; Chung C; Klopp AH; Peterson CB; Howell RM; Balter PA; Court LE
    Med Phys; 2020 Nov; 47(11):5592-5608. PubMed ID: 33459402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automatic Hyoid Bone Tracking in Real-Time Ultrasound Swallowing Videos Using Deep Learning Based and Correlation Filter Based Trackers.
    Feng S; Shea QT; Ng KY; Tang CN; Kwong E; Zheng Y
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection and Labeling of Vertebrae in MR Images Using Deep Learning with Clinical Annotations as Training Data.
    Forsberg D; Sjöblom E; Sunshine JL
    J Digit Imaging; 2017 Aug; 30(4):406-412. PubMed ID: 28083827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-input adaptive neural network for automatic detection of cervical vertebral landmarks on X-rays.
    Wang Y; Huang L; Wu M; Liu S; Jiao J; Bai T
    Comput Biol Med; 2022 Jul; 146():105576. PubMed ID: 35576823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tracking Hyoid Bone Displacement During Swallowing Without Videofluoroscopy Using Machine Learning of Vibratory Signals.
    Donohue C; Mao S; Sejdić E; Coyle JL
    Dysphagia; 2021 Apr; 36(2):259-269. PubMed ID: 32419103
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automated 3D segmentation and separation of multiple cervical vertebrae in CT images using a 2D convolutional neural network.
    Bae HJ; Hyun H; Byeon Y; Shin K; Cho Y; Song YJ; Yi S; Kuh SU; Yeom JS; Kim N
    Comput Methods Programs Biomed; 2020 Feb; 184():105119. PubMed ID: 31627152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully automatic cervical vertebrae segmentation framework for X-ray images.
    Al Arif SMMR; Knapp K; Slabaugh G
    Comput Methods Programs Biomed; 2018 Apr; 157():95-111. PubMed ID: 29477438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive identification of swallows via deep learning in high resolution cervical auscultation recordings.
    Khalifa Y; Coyle JL; Sejdić E
    Sci Rep; 2020 May; 10(1):8704. PubMed ID: 32457331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Closely do Machine Ratings of Duration of UES Opening During Videofluoroscopy Approximate Clinician Ratings Using Temporal Kinematic Analyses and the MBSImP?
    Donohue C; Khalifa Y; Perera S; Sejdić E; Coyle JL
    Dysphagia; 2021 Aug; 36(4):707-718. PubMed ID: 32955619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a fully automatic deep learning system for L3 selection and body composition assessment on computed tomography.
    Ha J; Park T; Kim HK; Shin Y; Ko Y; Kim DW; Sung YS; Lee J; Ham SJ; Khang S; Jeong H; Koo K; Lee J; Kim KW
    Sci Rep; 2021 Nov; 11(1):21656. PubMed ID: 34737340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved automatic detection of herpesvirus secondary envelopment stages in electron microscopy by augmenting training data with synthetic labelled images generated by a generative adversarial network.
    Shaga Devan K; Walther P; von Einem J; Ropinski T; A Kestler H; Read C
    Cell Microbiol; 2021 Feb; 23(2):e13280. PubMed ID: 33073426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated determination of the cervical vertebrae maturation stages using deep learning with directional filters.
    Atici SF; Ansari R; Allareddy V; Suhaym O; Cetin AE; Elnagar MH
    PLoS One; 2022; 17(7):e0269198. PubMed ID: 35776715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning-based detection and classification of geographic atrophy using a deep convolutional neural network classifier.
    Treder M; Lauermann JL; Eter N
    Graefes Arch Clin Exp Ophthalmol; 2018 Nov; 256(11):2053-2060. PubMed ID: 30091055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Deep learning-assisted construction of three-demensional facial midsagittal plane].
    Zhu YJ; Xu Q; Zhao YJ; Zhang L; Fu ZW; Wen AN; Gao ZX; Zhang J; Fu XL; Wang Y
    Beijing Da Xue Xue Bao Yi Xue Ban; 2022 Feb; 54(1):134-139. PubMed ID: 35165480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images.
    Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI
    Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-supervised training of deep convolutional neural networks with heterogeneous data and few local annotations: An experiment on prostate histopathology image classification.
    Marini N; Otálora S; Müller H; Atzori M
    Med Image Anal; 2021 Oct; 73():102165. PubMed ID: 34303169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A deep learning model for detection of cervical spinal cord compression in MRI scans.
    Merali Z; Wang JZ; Badhiwala JH; Witiw CD; Wilson JR; Fehlings MG
    Sci Rep; 2021 May; 11(1):10473. PubMed ID: 34006910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.