These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 34488086)
21. Digital Tools to Facilitate the Detection and Treatment of Bipolar Disorder: Key Developments and Future Directions. de Azevedo Cardoso T; Kochhar S; Torous J; Morton E JMIR Ment Health; 2024 Apr; 11():e58631. PubMed ID: 38557724 [TBL] [Abstract][Full Text] [Related]
22. Forecasting Mood in Bipolar Disorder From Smartphone Self-assessments: Hierarchical Bayesian Approach. Busk J; Faurholt-Jepsen M; Frost M; Bardram JE; Vedel Kessing L; Winther O JMIR Mhealth Uhealth; 2020 Apr; 8(4):e15028. PubMed ID: 32234702 [TBL] [Abstract][Full Text] [Related]
23. The Effectiveness of Wearable Devices Using Artificial Intelligence for Blood Glucose Level Forecasting or Prediction: Systematic Review. Ahmed A; Aziz S; Abd-Alrazaq A; Farooq F; Househ M; Sheikh J J Med Internet Res; 2023 Mar; 25():e40259. PubMed ID: 36917147 [TBL] [Abstract][Full Text] [Related]
24. Correlations Between Objective Behavioral Features Collected From Mobile and Wearable Devices and Depressive Mood Symptoms in Patients With Affective Disorders: Systematic Review. Rohani DA; Faurholt-Jepsen M; Kessing LV; Bardram JE JMIR Mhealth Uhealth; 2018 Aug; 6(8):e165. PubMed ID: 30104184 [TBL] [Abstract][Full Text] [Related]
25. Digital Communication Biomarkers of Mood and Diagnosis in Borderline Personality Disorder, Bipolar Disorder, and Healthy Control Populations. Gillett G; McGowan NM; Palmius N; Bilderbeck AC; Goodwin GM; Saunders KEA Front Psychiatry; 2021; 12():610457. PubMed ID: 33897487 [No Abstract] [Full Text] [Related]
26. e-Addictology: An Overview of New Technologies for Assessing and Intervening in Addictive Behaviors. Ferreri F; Bourla A; Mouchabac S; Karila L Front Psychiatry; 2018; 9():51. PubMed ID: 29545756 [TBL] [Abstract][Full Text] [Related]
27. Daily mood monitoring of symptoms using smartphones in bipolar disorder: A pilot study assessing the feasibility of ecological momentary assessment. Schwartz S; Schultz S; Reider A; Saunders EF J Affect Disord; 2016 Feb; 191():88-93. PubMed ID: 26655117 [TBL] [Abstract][Full Text] [Related]
28. Smartphone as a monitoring tool for bipolar disorder: a systematic review including data analysis, machine learning algorithms and predictive modelling. Antosik-Wójcińska AZ; Dominiak M; Chojnacka M; Kaczmarek-Majer K; Opara KR; Radziszewska W; Olwert A; Święcicki Ł Int J Med Inform; 2020 Jun; 138():104131. PubMed ID: 32305023 [TBL] [Abstract][Full Text] [Related]
29. Mood, activity, and sleep measured via daily smartphone-based self-monitoring in young patients with newly diagnosed bipolar disorder, their unaffected relatives and healthy control individuals. Melbye SA; Stanislaus S; Vinberg M; Frost M; Bardram JE; Sletved K; Coello K; Kjærstad HL; Christensen EM; Faurholt-Jepsen M; Kessing LV Eur Child Adolesc Psychiatry; 2021 Aug; 30(8):1209-1221. PubMed ID: 32743692 [TBL] [Abstract][Full Text] [Related]
30. Digital phenotype of mood disorders: A conceptual and critical review. Maatoug R; Oudin A; Adrien V; Saudreau B; Bonnot O; Millet B; Ferreri F; Mouchabac S; Bourla A Front Psychiatry; 2022; 13():895860. PubMed ID: 35958638 [TBL] [Abstract][Full Text] [Related]
31. Self-monitoring practices, attitudes, and needs of individuals with bipolar disorder: implications for the design of technologies to manage mental health. Murnane EL; Cosley D; Chang P; Guha S; Frank E; Gay G; Matthews M J Am Med Inform Assoc; 2016 May; 23(3):477-84. PubMed ID: 26911822 [TBL] [Abstract][Full Text] [Related]
32. Electronic self-monitoring of mood using IT platforms in adult patients with bipolar disorder: A systematic review of the validity and evidence. Faurholt-Jepsen M; Munkholm K; Frost M; Bardram JE; Kessing LV BMC Psychiatry; 2016 Jan; 16():7. PubMed ID: 26769120 [TBL] [Abstract][Full Text] [Related]
33. Mobile and wearable technology for monitoring depressive symptoms in children and adolescents: A scoping review. Sequeira L; Perrotta S; LaGrassa J; Merikangas K; Kreindler D; Kundur D; Courtney D; Szatmari P; Battaglia M; Strauss J J Affect Disord; 2020 Mar; 265():314-324. PubMed ID: 32090755 [TBL] [Abstract][Full Text] [Related]
34. [Assessment of mood disorders by passive data gathering: The concept of digital phenotype versus psychiatrist's professional culture]. Bourla A; Ferreri F; Ogorzelec L; Guinchard C; Mouchabac S Encephale; 2018 Apr; 44(2):168-175. PubMed ID: 29096909 [TBL] [Abstract][Full Text] [Related]
35. Overview of Artificial Intelligence-Driven Wearable Devices for Diabetes: Scoping Review. Ahmed A; Aziz S; Abd-Alrazaq A; Farooq F; Sheikh J J Med Internet Res; 2022 Aug; 24(8):e36010. PubMed ID: 35943772 [TBL] [Abstract][Full Text] [Related]
36. How New Technologies Can Improve Prediction, Assessment, and Intervention in Obsessive-Compulsive Disorder (e-OCD): Review. Ferreri F; Bourla A; Peretti CS; Segawa T; Jaafari N; Mouchabac S JMIR Ment Health; 2019 Dec; 6(12):e11643. PubMed ID: 31821153 [TBL] [Abstract][Full Text] [Related]
37. Using apps for bipolar disorder - An online survey of healthcare provider perspectives and practices. Morton E; Torous J; Murray G; Michalak EE J Psychiatr Res; 2021 May; 137():22-28. PubMed ID: 33647725 [TBL] [Abstract][Full Text] [Related]
38. The Contribution of Machine Learning in the Validation of Commercial Wearable Sensors for Gait Monitoring in Patients: A Systematic Review. Jourdan T; Debs N; Frindel C Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300546 [TBL] [Abstract][Full Text] [Related]
39. Will machine learning applied to neuroimaging in bipolar disorder help the clinician? A critical review and methodological suggestions. Claude LA; Houenou J; Duchesnay E; Favre P Bipolar Disord; 2020 Jun; 22(4):334-355. PubMed ID: 32108409 [TBL] [Abstract][Full Text] [Related]