These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 34488152)
1. Lipidomic metabolism associated with acetic acid priming-induced salt tolerance in Carex rigescens. Hu Q; Cui H; Ma C; Li Y; Yang C; Wang K; Sun Y Plant Physiol Biochem; 2021 Oct; 167():665-677. PubMed ID: 34488152 [TBL] [Abstract][Full Text] [Related]
2. Growth, physiology, and transcriptional analysis of Two contrasting Carex rigescens genotypes under Salt stress reveals salt-tolerance mechanisms. Li M; Zhang K; Sun Y; Cui H; Cao S; Yan L; Xu M J Plant Physiol; 2018 Oct; 229():77-88. PubMed ID: 30048907 [TBL] [Abstract][Full Text] [Related]
4. Overexpression of CrCOMT from Carex rigescens increases salt stress and modulates melatonin synthesis in Arabidopsis thaliana. Zhang K; Cui H; Cao S; Yan L; Li M; Sun Y Plant Cell Rep; 2019 Dec; 38(12):1501-1514. PubMed ID: 31473792 [TBL] [Abstract][Full Text] [Related]
5. Comparative time-course transcriptome analysis in contrasting Carex rigescens genotypes in response to high environmental salinity. Zhang K; Cui H; Li M; Xu Y; Cao S; Long R; Kang J; Wang K; Hu Q; Sun Y Ecotoxicol Environ Saf; 2020 May; 194():110435. PubMed ID: 32169728 [TBL] [Abstract][Full Text] [Related]
6. CrUGT87A1, a UDP-sugar glycosyltransferases (UGTs) gene from Carex rigescens, increases salt tolerance by accumulating flavonoids for antioxidation in Arabidopsis thaliana. Zhang K; Sun Y; Li M; Long R Plant Physiol Biochem; 2021 Feb; 159():28-36. PubMed ID: 33321375 [TBL] [Abstract][Full Text] [Related]
7. Choline-Mediated Lipid Reprogramming as a Dominant Salt Tolerance Mechanism in Grass Species Lacking Glycine Betaine. Zhang K; Lyu W; Gao Y; Zhang X; Sun Y; Huang B Plant Cell Physiol; 2021 Feb; 61(12):2018-2030. PubMed ID: 32931553 [TBL] [Abstract][Full Text] [Related]
8. Up-regulation of lipid metabolism and glycine betaine synthesis are associated with choline-induced salt tolerance in halophytic seashore paspalum. Gao Y; Li M; Zhang X; Yang Q; Huang B Plant Cell Environ; 2020 Jan; 43(1):159-173. PubMed ID: 31600831 [TBL] [Abstract][Full Text] [Related]
9. Physiological and lipidomic response of exogenous choline chloride alleviating salt stress injury in Kentucky bluegrass ( Zuo ZF; Li Y; Mi XF; Li YL; Zhai CY; Yang GF; Wang ZY; Zhang K Front Plant Sci; 2023; 14():1269286. PubMed ID: 37719216 [TBL] [Abstract][Full Text] [Related]
10. Li Y; Sun Y; Cui H; Li M; Yang G; Wang Z; Zhang K Front Plant Sci; 2022; 13():971431. PubMed ID: 36035693 [TBL] [Abstract][Full Text] [Related]
11. Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. Sheteiwy MS; Shao H; Qi W; Daly P; Sharma A; Shaghaleh H; Hamoud YA; El-Esawi MA; Pan R; Wan Q; Lu H J Sci Food Agric; 2021 Mar; 101(5):2027-2041. PubMed ID: 32949013 [TBL] [Abstract][Full Text] [Related]
12. Selection and validation of reference genes for target gene analysis with quantitative real-time PCR in the leaves and roots of Carex rigescens under abiotic stress. Zhang K; Li M; Cao S; Sun Y; Long R; Kang J; Yan L; Cui H Ecotoxicol Environ Saf; 2019 Jan; 168():127-137. PubMed ID: 30384160 [TBL] [Abstract][Full Text] [Related]
13. Metabolic Regulation and Lipidomic Remodeling in Relation to Spermidine-induced Stress Tolerance to High Temperature in Plants. Li Z; Cheng B; Zhao Y; Luo L; Zhang Y; Feng G; Han L; Peng Y; Zhang X Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293104 [TBL] [Abstract][Full Text] [Related]
14. Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Kumar A; Singh S; Mukherjee A; Rastogi RP; Verma JP Microbiol Res; 2021 Jan; 242():126616. PubMed ID: 33115624 [TBL] [Abstract][Full Text] [Related]
15. Lipidomics-based insights into the physiological mechanism of wheat in response to heat stress. Hu H; Jia Y; Hao Z; Ma G; Xie Y; Wang C; Ma D Plant Physiol Biochem; 2023 Dec; 205():108190. PubMed ID: 37988880 [TBL] [Abstract][Full Text] [Related]
16. [Evaluation of cold resistance of four wild Carex speices]. Ye YR; Wang WL; Zheng CS; Fu J; Liu HW Ying Yong Sheng Tai Xue Bao; 2017 Jan; 28(1):89-95. PubMed ID: 29749192 [TBL] [Abstract][Full Text] [Related]
17. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. El-Esawi MA; Alaraidh IA; Alsahli AA; Alamri SA; Ali HM; Alayafi AA Plant Physiol Biochem; 2018 Nov; 132():375-384. PubMed ID: 30268029 [TBL] [Abstract][Full Text] [Related]
18. Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Khan I; Raza MA; Awan SA; Shah GA; Rizwan M; Ali B; Tariq R; Hassan MJ; Alyemeni MN; Brestic M; Zhang X; Ali S; Huang L Plant Physiol Biochem; 2020 Nov; 156():221-232. PubMed ID: 32979796 [TBL] [Abstract][Full Text] [Related]
19. Priming-induced alterations in histone modifications modulate transcriptional responses in soybean under salt stress. Yung WS; Wang Q; Huang M; Wong FL; Liu A; Ng MS; Li KP; Sze CC; Li MW; Lam HM Plant J; 2022 Mar; 109(6):1575-1590. PubMed ID: 34961994 [TBL] [Abstract][Full Text] [Related]
20. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenic Nicotiana benthamiana through ABA signaling and the modulation of reactive oxygen species production. Yan H; Jia H; Chen X; Hao L; An H; Guo X Plant Cell Physiol; 2014 Dec; 55(12):2060-76. PubMed ID: 25261532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]