These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
109 related articles for article (PubMed ID: 34488222)
1. Therapeutic Potential of Human Nasal Inferior Turbinate-Derived Stem Cells: Microarray Analysis of Multilineage Differentiation. Park SH; Kim DH; Lim MH; Back SA; Yun BG; Jeun JH; Lim JY; Kim SY; Hwang SH; Kim SW ORL J Otorhinolaryngol Relat Spec; 2022; 84(2):153-166. PubMed ID: 34488222 [TBL] [Abstract][Full Text] [Related]
2. Human Nasal Inferior Turbinate-Derived Neural Stem Cells Improve the Niche of Substantia Nigra Par Compacta in a Parkinson's Disease Model by Modulating Hippo Signaling. Choi J; Park SW; Lee H; Kim DH; Kim SW Tissue Eng Regen Med; 2024 Jul; 21(5):737-748. PubMed ID: 38600296 [TBL] [Abstract][Full Text] [Related]
3. Potential application of human neural crest-derived nasal turbinate stem cells for the treatment of neuropathology and impaired cognition in models of Alzheimer's disease. Lim JY; In Park S; Park SA; Jeon JH; Jung HY; Yon JM; Jeun SS; Lim HK; Kim SW Stem Cell Res Ther; 2021 Jul; 12(1):402. PubMed ID: 34256823 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of Human Nasal Turbinate Stem Cells under Hypoxic Conditions. Kim DH; Kim SH; Park SH; Kwon MY; Lim CY; Park SH; Gwon K; Hwang SH; Kim SW Cells; 2023 Sep; 12(19):. PubMed ID: 37830573 [TBL] [Abstract][Full Text] [Related]
5. In vivo Oxygen Condition of Human Nasal Inferior Turbinate-Derived Stem Cells in Human Nose. Hwang SH; Lee DC; Kim DH; Kim BY; Park SH; Lim MH; Jeun JH; Park YH; Kim SW ORL J Otorhinolaryngol Relat Spec; 2020; 82(2):86-92. PubMed ID: 31991414 [TBL] [Abstract][Full Text] [Related]
6. Isolation and characterization of multipotent mesenchymal stem cells in nasal polyps. Cho JS; Park JH; Kang JH; Kim SE; Park IH; Lee HM Exp Biol Med (Maywood); 2015 Feb; 240(2):185-93. PubMed ID: 25294891 [TBL] [Abstract][Full Text] [Related]
7. Comparative analysis of gene transcripts for cell signaling receptors in bone marrow-derived hematopoietic stem/progenitor cell and mesenchymal stromal cell populations. Anam K; Davis TA Stem Cell Res Ther; 2013 Sep; 4(5):112. PubMed ID: 24405801 [TBL] [Abstract][Full Text] [Related]
8. Specific functions of TET1 and TET2 in regulating mesenchymal cell lineage determination. Cakouros D; Hemming S; Gronthos K; Liu R; Zannettino A; Shi S; Gronthos S Epigenetics Chromatin; 2019 Jan; 12(1):3. PubMed ID: 30606231 [TBL] [Abstract][Full Text] [Related]
10. Transfection of gene regulation nanoparticles complexed with pDNA and shRNA controls multilineage differentiation of hMSCs. Kim HJ; Yi SW; Oh HJ; Lee JS; Park JS; Park KH Biomaterials; 2018 Sep; 177():1-13. PubMed ID: 29883913 [TBL] [Abstract][Full Text] [Related]
11. SOX9 gene transfer via safe, stable, replication-defective recombinant adeno-associated virus vectors as a novel, powerful tool to enhance the chondrogenic potential of human mesenchymal stem cells. Venkatesan JK; Ekici M; Madry H; Schmitt G; Kohn D; Cucchiarini M Stem Cell Res Ther; 2012; 3(3):22. PubMed ID: 22742415 [TBL] [Abstract][Full Text] [Related]
12. Characteristics of mesenchymal stem cells originating from the bilateral inferior turbinate in humans with nasal septal deviation. Hwang SH; Park SH; Choi J; Lee DC; Oh JH; Kim SW; Kim JB PLoS One; 2014; 9(6):e100219. PubMed ID: 24926874 [TBL] [Abstract][Full Text] [Related]
13. Protective Effect of Human-Neural-Crest-Derived Nasal Turbinate Stem Cells against Amyloid-β Neurotoxicity through Inhibition of Osteopontin in a Human Cerebral Organoid Model of Alzheimer's Disease. Lim JY; Lee JE; Park SA; Park SI; Yon JM; Park JA; Jeun SS; Kim SJ; Lee HJ; Kim SW; Yang SH Cells; 2022 Mar; 11(6):. PubMed ID: 35326480 [TBL] [Abstract][Full Text] [Related]
14. Tissue source determines the differentiation potentials of mesenchymal stem cells: a comparative study of human mesenchymal stem cells from bone marrow and adipose tissue. Xu L; Liu Y; Sun Y; Wang B; Xiong Y; Lin W; Wei Q; Wang H; He W; Wang B; Li G Stem Cell Res Ther; 2017 Dec; 8(1):275. PubMed ID: 29208029 [TBL] [Abstract][Full Text] [Related]
15. Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Boyette LB; Creasey OA; Guzik L; Lozito T; Tuan RS Stem Cells Transl Med; 2014 Feb; 3(2):241-54. PubMed ID: 24436440 [TBL] [Abstract][Full Text] [Related]
17. Gene expression profiling of human bone marrow mesenchymal stem cells during osteogenic differentiation. Jiang H; Hong T; Wang T; Wang X; Cao L; Xu X; Zheng M J Cell Physiol; 2019 May; 234(5):7070-7077. PubMed ID: 30378112 [TBL] [Abstract][Full Text] [Related]
18. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton's jelly and bone marrow-derived mesenchymal stem cells. Batsali AK; Pontikoglou C; Koutroulakis D; Pavlaki KI; Damianaki A; Mavroudi I; Alpantaki K; Kouvidi E; Kontakis G; Papadaki HA Stem Cell Res Ther; 2017 Apr; 8(1):102. PubMed ID: 28446235 [TBL] [Abstract][Full Text] [Related]
19. Human circulating fibrocytes have the capacity to differentiate osteoblasts and chondrocytes. Choi YH; Burdick MD; Strieter RM Int J Biochem Cell Biol; 2010 May; 42(5):662-71. PubMed ID: 20034590 [TBL] [Abstract][Full Text] [Related]
20. The effect of dexamethasone and triiodothyronine on terminal differentiation of primary bovine chondrocytes and chondrogenically differentiated mesenchymal stem cells. Randau TM; Schildberg FA; Alini M; Wimmer MD; Haddouti el-M; Gravius S; Ito K; Stoddart MJ PLoS One; 2013; 8(8):e72973. PubMed ID: 23977373 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]