BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 34488338)

  • 1. Generalizing Continuum Solvation in Crystal to Nonaqueous Solvents: Implementation, Parametrization, and Application to Molecules and Surfaces.
    Vassetti D; Oǧuz IC; Labat F
    J Chem Theory Comput; 2021 Oct; 17(10):6432-6448. PubMed ID: 34488338
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a transferable nonelectrostatic model for continuum solvation: The electrostatic and nonelectrostatic energy correction model.
    Vassetti D; Labat F
    J Comput Chem; 2022 Jul; 43(20):1372-1387. PubMed ID: 35678272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implicit Solvation Using a Generalized Finite-Difference Approach in CRYSTAL: Implementation and Results for Molecules, Polymers, and Surfaces.
    Labat F; Civalleri B; Dovesi R
    J Chem Theory Comput; 2018 Nov; 14(11):5969-5983. PubMed ID: 30347161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized Born Solvation Model SM12.
    Marenich AV; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2013 Jan; 9(1):609-20. PubMed ID: 26589059
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum mechanical continuum solvation models for ionic liquids.
    Bernales VS; Marenich AV; Contreras R; Cramer CJ; Truhlar DG
    J Phys Chem B; 2012 Aug; 116(30):9122-9. PubMed ID: 22734466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft-Sphere Continuum Solvation in Electronic-Structure Calculations.
    Fisicaro G; Genovese L; Andreussi O; Mandal S; Nair NN; Marzari N; Goedecker S
    J Chem Theory Comput; 2017 Aug; 13(8):3829-3845. PubMed ID: 28628316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft-sphere continuum solvation models for nonaqueous solvents.
    Si P; Jayanth A; Andreussi O
    J Comput Chem; 2024 Apr; 45(11):719-737. PubMed ID: 38112395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of Solvation Free Energies of Ionic Solutes in Neutral Solvents.
    Kröger LC; Müller S; Smirnova I; Leonhard K
    J Phys Chem A; 2020 May; 124(20):4171-4181. PubMed ID: 32336096
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quick solvation energy estimator based on electronegativity equalization.
    Vyboishchikov SF
    J Comput Chem; 2023 Jan; 44(3):307-318. PubMed ID: 35588107
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculating the binding free energies of charged species based on explicit-solvent simulations employing lattice-sum methods: an accurate correction scheme for electrostatic finite-size effects.
    Rocklin GJ; Mobley DL; Dill KA; Hünenberger PH
    J Chem Phys; 2013 Nov; 139(18):184103. PubMed ID: 24320250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities.
    Ginovska B; Camaioni DM; Dupuis M; Schwerdtfeger CA; Gil Q
    J Phys Chem A; 2008 Oct; 112(42):10604-13. PubMed ID: 18816107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Solvation Free Energies from the Minnesota Solvation Database Using Classical Density Functional Theory Based on the PC-SAFT Equation of State.
    Bursik B; Eller J; Gross J
    J Phys Chem B; 2024 Apr; 128(15):3677-3688. PubMed ID: 38579126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Compilation and Computation of Hydration Free Energies for Ionic Solutes.
    Zheng JW; Green WH
    J Phys Chem A; 2023 Dec; 127(48):10268-10281. PubMed ID: 38010212
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvation Free Energies for Aqueous and Nonaqueous Solutions Computed Using PM7 Atomic Charges.
    Vyboishchikov SF; Voityuk AA
    J Chem Inf Model; 2021 Sep; 61(9):4544-4553. PubMed ID: 34525302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calculation of the solvation free energy of neutral and ionic molecules in diverse solvents.
    Lee S; Cho KH; Lee CJ; Kim GE; Na CH; In Y; No KT
    J Chem Inf Model; 2011 Jan; 51(1):105-14. PubMed ID: 21133372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models.
    Bryantsev VS; Diallo MS; Goddard WA
    J Phys Chem B; 2008 Aug; 112(32):9709-19. PubMed ID: 18646800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.