These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 34488625)
1. Alterations in the leaf lipidome of Brassica carinata under high-temperature stress. Zoong Lwe Z; Sah S; Persaud L; Li J; Gao W; Raja Reddy K; Narayanan S BMC Plant Biol; 2021 Sep; 21(1):404. PubMed ID: 34488625 [TBL] [Abstract][Full Text] [Related]
2. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Narayanan S; Tamura PJ; Roth MR; Prasad PV; Welti R Plant Cell Environ; 2016 Apr; 39(4):787-803. PubMed ID: 26436679 [TBL] [Abstract][Full Text] [Related]
3. Heat stress elicits remodeling in the anther lipidome of peanut. Zoong Lwe ZS; Welti R; Anco D; Naveed S; Rustgi S; Narayanan S Sci Rep; 2020 Dec; 10(1):22163. PubMed ID: 33335149 [TBL] [Abstract][Full Text] [Related]
4. Environmental alterations in biofuel generating molecules in Zilla spinosa. Khattab H; El Marid Z Z Naturforsch C J Biosci; 2017 Mar; 72(3-4):77-91. PubMed ID: 27740933 [TBL] [Abstract][Full Text] [Related]
5. Wheat leaf lipids during heat stress: II. Lipids experiencing coordinated metabolism are detected by analysis of lipid co-occurrence. Narayanan S; Prasad PV; Welti R Plant Cell Environ; 2016 Mar; 39(3):608-17. PubMed ID: 26436445 [TBL] [Abstract][Full Text] [Related]
6. Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress. Bejaoui F; Salas JJ; Nouairi I; Smaoui A; Abdelly C; Martínez-Force E; Youssef NB J Plant Physiol; 2016 Jul; 198():32-8. PubMed ID: 27131842 [TBL] [Abstract][Full Text] [Related]
7. Alterations in wheat pollen lipidome during high day and night temperature stress. Narayanan S; Prasad PVV; Welti R Plant Cell Environ; 2018 Aug; 41(8):1749-1761. PubMed ID: 29377219 [TBL] [Abstract][Full Text] [Related]
8. Comparative Lipidomic Analysis Reveals Heat Stress Responses of Two Soybean Genotypes Differing in Temperature Sensitivity. Narayanan S; Zoong-Lwe ZS; Gandhi N; Welti R; Fallen B; Smith JR; Rustgi S Plants (Basel); 2020 Apr; 9(4):. PubMed ID: 32260392 [TBL] [Abstract][Full Text] [Related]
9. Low- and High-Temperature Phenotypic Diversity of Persaud L; Bheemanahalli R; Seepaul R; Reddy KR; Macoon B Front Plant Sci; 2022; 13():900011. PubMed ID: 35774821 [TBL] [Abstract][Full Text] [Related]
10. The role of phosphatidylcholine in fatty acid exchange and desaturation in Brassica napus L. leaves. Williams JP; Imperial V; Khan MU; Hodson JN Biochem J; 2000 Jul; 349(Pt 1):127-33. PubMed ID: 10861220 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and characterization of poly(3-hydroxyalkanoates) from Brassica carinata oil with high content of erucic acid and from very long chain fatty acids. Impallomeni G; Ballistreri A; Carnemolla GM; Guglielmino SP; Nicolò MS; Cambria MG Int J Biol Macromol; 2011 Jan; 48(1):137-45. PubMed ID: 21035502 [TBL] [Abstract][Full Text] [Related]
12. Biochemical characterization of temperature-induced changes in lipid metabolism in a high oleic acid mutant of Brassica rapa. Lee MS; Guerra DJ Arch Biochem Biophys; 1994 Nov; 315(1):203-11. PubMed ID: 7979400 [TBL] [Abstract][Full Text] [Related]
13. Lipidomics-based insights into the physiological mechanism of wheat in response to heat stress. Hu H; Jia Y; Hao Z; Ma G; Xie Y; Wang C; Ma D Plant Physiol Biochem; 2023 Dec; 205():108190. PubMed ID: 37988880 [TBL] [Abstract][Full Text] [Related]
14. The Effect of Temperature on the Level and Biosynthesis of Unsaturated Fatty Acids in Diacylglycerols of Brassica napus Leaves. Williams JP; Khan MU; Mitchell K; Johnson G Plant Physiol; 1988 Aug; 87(4):904-10. PubMed ID: 16666243 [TBL] [Abstract][Full Text] [Related]
15. An integrated analysis of the rice transcriptome and lipidome reveals lipid metabolism plays a central role in rice cold tolerance. Liu H; Xin W; Wang Y; Zhang D; Wang J; Zheng H; Yang L; Nie S; Zou D BMC Plant Biol; 2022 Mar; 22(1):91. PubMed ID: 35232394 [TBL] [Abstract][Full Text] [Related]
16. Comparative transcriptomic and evolutionary analysis of FAD-like genes of Brassica species revealed their role in fatty acid biosynthesis and stress tolerance. Shaheen N; Khan UM; Farooq A; Zafar UB; Khan SH; Ahmad S; Azhar MT; Atif RM; Rana IA; Seo H BMC Plant Biol; 2023 May; 23(1):250. PubMed ID: 37173631 [TBL] [Abstract][Full Text] [Related]
17. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. Falcone DL; Ogas JP; Somerville CR BMC Plant Biol; 2004 Sep; 4():17. PubMed ID: 15377388 [TBL] [Abstract][Full Text] [Related]
18. Lipid modulation contributes to heat stress adaptation in peanut. Spivey WW; Rustgi S; Welti R; Roth MR; Burow MD; Bridges WC; Narayanan S Front Plant Sci; 2023; 14():1299371. PubMed ID: 38164249 [TBL] [Abstract][Full Text] [Related]
19. Ontogenetic changes of 2-propenyl and 3-indolylmethyl glucosinolates in Brassica carinata leaves as affected by water supply. Schreiner M; Beyene B; Krumbein A; Stützel H J Agric Food Chem; 2009 Aug; 57(16):7259-63. PubMed ID: 20349919 [TBL] [Abstract][Full Text] [Related]
20. Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana. Higashi Y; Okazaki Y; Myouga F; Shinozaki K; Saito K Sci Rep; 2015 May; 5():10533. PubMed ID: 26013835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]