BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 34488783)

  • 1. Mithramycin delivery systems to develop effective therapies in sarcomas.
    Estupiñán Ó; Niza E; Bravo I; Rey V; Tornín J; Gallego B; Clemente-Casares P; Moris F; Ocaña A; Blanco-Lorenzo V; Rodríguez-Santamaría M; Vallina-Álvarez A; González MV; Rodríguez A; Hermida-Merino D; Alonso-Moreno C; Rodríguez R
    J Nanobiotechnology; 2021 Sep; 19(1):267. PubMed ID: 34488783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nano-Encapsulation of Mithramycin in Transfersomes and Polymeric Micelles for the Treatment of Sarcomas.
    Estupiñán Ó; Rendueles C; Suárez P; Rey V; Murillo D; Morís F; Gutiérrez G; Blanco-López MDC; Matos M; Rodríguez R
    J Clin Med; 2021 Mar; 10(7):. PubMed ID: 33806182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of the activity of Sp transcription factors by mithramycin analogues as a new strategy for treatment of metastatic prostate cancer.
    Malek A; Núñez LE; Magistri M; Brambilla L; Jovic S; Carbone GM; Morís F; Catapano CV
    PLoS One; 2012; 7(4):e35130. PubMed ID: 22545098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Antitumoral Activity of Encapsulated BET Inhibitors When Combined with PARP Inhibitors for the Treatment of Triple-Negative Breast and Ovarian Cancers.
    Juan A; Noblejas-López MDM; Bravo I; Arenas-Moreira M; Blasco-Navarro C; Clemente-Casares P; Lara-Sánchez A; Pandiella A; Alonso-Moreno C; Ocaña A
    Cancers (Basel); 2022 Sep; 14(18):. PubMed ID: 36139634
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of SP1 by the mithramycin analog EC-8042 efficiently targets tumor initiating cells in sarcoma.
    Tornin J; Martinez-Cruzado L; Santos L; Rodriguez A; Núñez LE; Oro P; Hermosilla MA; Allonca E; Fernández-García MT; Astudillo A; Suarez C; Morís F; Rodriguez R
    Oncotarget; 2016 May; 7(21):30935-50. PubMed ID: 27105533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Sp1-dependent transcription and antitumor activity of the new aureolic acid analogues mithramycin SDK and SK in human ovarian cancer xenografts.
    Previdi S; Malek A; Albertini V; Riva C; Capella C; Broggini M; Carbone GM; Rohr J; Catapano CV
    Gynecol Oncol; 2010 Aug; 118(2):182-8. PubMed ID: 20452660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoparticulate formulations of mithramycin analogs for enhanced cytotoxicity.
    Scott D; Rohr J; Bae Y
    Int J Nanomedicine; 2011; 6():2757-67. PubMed ID: 22114504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mithramycin SK, a novel antitumor drug with improved therapeutic index, mithramycin SA, and demycarosyl-mithramycin SK: three new products generated in the mithramycin producer Streptomyces argillaceus through combinatorial biosynthesis.
    Remsing LL; González AM; Nur-e-Alam M; Fernández-Lozano MJ; Braña AF; Rix U; Oliveira MA; Méndez C; Salas JA; Rohr J
    J Am Chem Soc; 2003 May; 125(19):5745-53. PubMed ID: 12733914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Barbaloin loaded polydopamine-polylactide-TPGS (PLA-TPGS) nanoparticles against gastric cancer as a targeted drug delivery system: Studies in vitro and in vivo.
    Wang YR; Yang SY; Chen GX; Wei P
    Biochem Biophys Res Commun; 2018 Apr; 499(1):8-16. PubMed ID: 29534962
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mithramycin-loaded mPEG-PLGA nanoparticles exert potent antitumor efficacy against pancreatic carcinoma.
    Liu XJ; Li L; Liu XJ; Li Y; Zhao CY; Wang RQ; Zhen YS
    Int J Nanomedicine; 2017; 12():5255-5269. PubMed ID: 28769562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mithramycin, an agent for developing new therapeutic drugs for neurodegenerative diseases.
    Osada N; Kosuge Y; Ishige K; Ito Y
    J Pharmacol Sci; 2013; 122(4):251-6. PubMed ID: 23902990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single and double emulsion manufacturing techniques of an amphiphilic drug in PLGA nanoparticles: formulations of mithramycin and bioactivity.
    Cohen-Sela E; Teitlboim S; Chorny M; Koroukhov N; Danenberg HD; Gao J; Golomb G
    J Pharm Sci; 2009 Apr; 98(4):1452-62. PubMed ID: 18704956
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel GC-rich DNA-binding compound produced by a genetically engineered mutant of the mithramycin producer Streptomyces argillaceus exhibits improved transcriptional repressor activity: implications for cancer therapy.
    Albertini V; Jain A; Vignati S; Napoli S; Rinaldi A; Kwee I; Nur-e-Alam M; Bergant J; Bertoni F; Carbone GM; Rohr J; Catapano CV
    Nucleic Acids Res; 2006; 34(6):1721-34. PubMed ID: 16571899
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycine-Poly-L-Lactic Acid Copolymeric Nanoparticles for the Efficient Delivery of Bortezomib.
    Rajoria S; Rani S; Chaudhari D; Jain S; Gupta U
    Pharm Res; 2019 Sep; 36(11):160. PubMed ID: 31520196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CDK9 Blockade Exploits Context-dependent Transcriptional Changes to Improve Activity and Limit Toxicity of Mithramycin for Ewing Sarcoma.
    Flores G; Everett JH; Boguslawski EA; Oswald BM; Madaj ZB; Beddows I; Dikalov S; Adams M; Klumpp-Thomas CA; Kitchen-Goosen SM; Martin SE; Caplen NJ; Helman LJ; Grohar PJ
    Mol Cancer Ther; 2020 May; 19(5):1183-1196. PubMed ID: 32127464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The antitumor antibiotic mithramycin: new advanced approaches in modification and production.
    Kormanec J; Novakova R; Csolleiova D; Feckova L; Rezuchova B; Sevcikova B; Homerova D
    Appl Microbiol Biotechnol; 2020 Sep; 104(18):7701-7721. PubMed ID: 32686008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of c-src transcription by mithramycin: structure-activity relationships of biosynthetically produced mithramycin analogues using the c-src promoter as target.
    Remsing LL; Bahadori HR; Carbone GM; McGuffie EM; Catapano CV; Rohr J
    Biochemistry; 2003 Jul; 42(27):8313-24. PubMed ID: 12846580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salinomycin-loaded lipid-polymer nanoparticles with anti-CD20 aptamers selectively suppress human CD20+ melanoma stem cells.
    Zeng YB; Yu ZC; He YN; Zhang T; Du LB; Dong YM; Chen HW; Zhang YY; Wang WQ
    Acta Pharmacol Sin; 2018 Feb; 39(2):261-274. PubMed ID: 29388568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RETRACTED: Enhanced antitumor efficacy of 5-fluorouracil loaded methoxy poly(ethylene glycol)-poly(lactide) nanoparticles for efficient therapy against breast cancer.
    Yuan Z; Qu X; Wang Y; Zhang DY; Luo JC; Jia N; Zhang ZT
    Colloids Surf B Biointerfaces; 2015 Apr; 128():489-497. PubMed ID: 25779606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioanalytical method for quantitative determination of mithramycin analogs in mouse plasma by HPLC-QTOF.
    Eckenrode JM; Mitra P; Rohr J; Leggas M
    Biomed Chromatogr; 2019 Aug; 33(8):e4544. PubMed ID: 30927450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.