These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 34488855)
1. A comprehensive study of the promoting effect of manganese on white rot fungal treatment for enzymatic hydrolysis of woody and grass lignocellulose. Fu X; Zhang J; Gu X; Yu H; Chen S Biotechnol Biofuels; 2021 Sep; 14(1):176. PubMed ID: 34488855 [TBL] [Abstract][Full Text] [Related]
2. Mechanistic insight in the selective delignification of wheat straw by three white-rot fungal species through quantitative van Erven G; Nayan N; Sonnenberg ASM; Hendriks WH; Cone JW; Kabel MA Biotechnol Biofuels; 2018; 11():262. PubMed ID: 30263063 [TBL] [Abstract][Full Text] [Related]
3. A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus. Fernández-Fueyo E; Ruiz-Dueñas FJ; López-Lucendo MF; Pérez-Boada M; Rencoret J; Gutiérrez A; Pisabarro AG; Ramírez L; Martínez AT Biotechnol Biofuels; 2016; 9():49. PubMed ID: 26933449 [TBL] [Abstract][Full Text] [Related]
4. Structural Motifs of Wheat Straw Lignin Differ in Susceptibility to Degradation by the White-Rot Fungus van Erven G; Wang J; Sun P; de Waard P; van der Putten J; Frissen GE; Gosselink RJA; Zinovyev G; Potthast A; van Berkel WJH; Kabel MA ACS Sustain Chem Eng; 2019 Dec; 7(24):20032-20042. PubMed ID: 31867146 [TBL] [Abstract][Full Text] [Related]
5. A novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion. Kong W; Fu X; Wang L; Alhujaily A; Zhang J; Ma F; Zhang X; Yu H Biotechnol Biofuels; 2017; 10():218. PubMed ID: 28924453 [TBL] [Abstract][Full Text] [Related]
7. Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment. Auxenfans T; Crônier D; Chabbert B; Paës G Biotechnol Biofuels; 2017; 10():36. PubMed ID: 28191037 [TBL] [Abstract][Full Text] [Related]
8. Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium. Zeng J; Singh D; Gao D; Chen S Biotechnol Biofuels; 2014; 7(1):161. PubMed ID: 25516769 [TBL] [Abstract][Full Text] [Related]
9. Laccase pretreatment of wheat straw: effects of the physicochemical characteristics and the kinetics of enzymatic hydrolysis. Deng Z; Xia A; Liao Q; Zhu X; Huang Y; Fu Q Biotechnol Biofuels; 2019; 12():159. PubMed ID: 31249622 [TBL] [Abstract][Full Text] [Related]
10. Selective delignification of poplar wood with a newly isolated white-rot basidiomycete Peniophora incarnata T-7 by submerged fermentation to enhance saccharification. Ma J; Yue H; Li H; Zhang J; Zhang Y; Wang X; Gong S; Liu GQ Biotechnol Biofuels; 2021 Jun; 14(1):135. PubMed ID: 34118970 [TBL] [Abstract][Full Text] [Related]
11. Structural characterization of the lignin-carbohydrate complex in biomass pretreated with Fenton oxidation and hydrothermal treatment and consequences on enzymatic hydrolysis efficiency. Jeong SY; Lee EJ; Ban SE; Lee JW Carbohydr Polym; 2021 Oct; 270():118375. PubMed ID: 34364619 [TBL] [Abstract][Full Text] [Related]
13. Quantification of Lignin and Its Structural Features in Plant Biomass Using van Erven G; de Visser R; Merkx DWH; Strolenberg W; de Gijsel P; Gruppen H; Kabel MA Anal Chem; 2017 Oct; 89(20):10907-10916. PubMed ID: 28926698 [TBL] [Abstract][Full Text] [Related]
14. Efficient Fractionation of Lignin- and Ash-Rich Agricultural Residues Following Treatment With a Low-Cost Protic Ionic Liquid. Chambon CL; Chen M; Fennell PS; Hallett JP Front Chem; 2019; 7():246. PubMed ID: 31058135 [TBL] [Abstract][Full Text] [Related]
15. Brassinosteroid overproduction improves lignocellulose quantity and quality to maximize bioethanol yield under green-like biomass process in transgenic poplar. Fan C; Yu H; Qin S; Li Y; Alam A; Xu C; Fan D; Zhang Q; Wang Y; Zhu W; Peng L; Luo K Biotechnol Biofuels; 2020; 13():9. PubMed ID: 31988661 [TBL] [Abstract][Full Text] [Related]
16. Lytic polysaccharide monooxygenases promote oxidative cleavage of lignin and lignin-carbohydrate complexes during fungal degradation of lignocellulose. Li F; Zhang J; Ma F; Chen Q; Xiao Q; Zhang X; Xie S; Yu H Environ Microbiol; 2021 Aug; 23(8):4547-4560. PubMed ID: 34169632 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process. Yang H; Xie Y; Zheng X; Pu Y; Huang F; Meng X; Wu W; Ragauskas A; Yao L Bioresour Technol; 2016 May; 207():361-9. PubMed ID: 26897415 [TBL] [Abstract][Full Text] [Related]
18. [Degradation of lignocellulose in the corn straw by Bacillus amyloliquefaciens MN-8]. Li HY; Li SN; Wang SX; Wang Q; Xue YY; Zhu BC Ying Yong Sheng Tai Xue Bao; 2015 May; 26(5):1404-10. PubMed ID: 26571658 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of PtoMYB115 improves lignocellulose recalcitrance to enhance biomass digestibility and bioethanol yield by specifically regulating lignin biosynthesis in transgenic poplar. Fan C; Zhang W; Guo Y; Sun K; Wang L; Luo K Biotechnol Biofuels Bioprod; 2022 Nov; 15(1):119. PubMed ID: 36335384 [TBL] [Abstract][Full Text] [Related]
20. Improving the nutritional value and digestibility of wheat straw, rice straw, and corn cob through solid state fermentation using different Pleurotus species. Sufyan A; Ahmad N; Shahzad F; Embaby MG; AbuGhazaleh A; Khan NA J Sci Food Agric; 2022 Apr; 102(6):2445-2453. PubMed ID: 34636045 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]