These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 34489039)
1. De novo biosynthesis of tyrosol acetate and hydroxytyrosol acetate from glucose in engineered Escherichia coli. Guo D; Fu X; Sun Y; Li X; Pan H Enzyme Microb Technol; 2021 Oct; 150():109886. PubMed ID: 34489039 [TBL] [Abstract][Full Text] [Related]
2. [Metabolic engineering of Escherichia coli for production of hydroxytyrosol]. Liu C; Xia Y; Qi L; Yang H; Chen L; Shen W; Chen X Sheng Wu Gong Cheng Xue Bao; 2021 Dec; 37(12):4243-4253. PubMed ID: 34984871 [TBL] [Abstract][Full Text] [Related]
3. Liu Y; Song D; Hu H; Yang R; Lyu X ACS Synth Biol; 2022 Sep; 11(9):3067-3077. PubMed ID: 35952699 [TBL] [Abstract][Full Text] [Related]
4. Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli. Chung D; Kim SY; Ahn JH Sci Rep; 2017 May; 7(1):2578. PubMed ID: 28566694 [TBL] [Abstract][Full Text] [Related]
5. Establishing an Artificial Pathway for Efficient Biosynthesis of Hydroxytyrosol. Li X; Chen Z; Wu Y; Yan Y; Sun X; Yuan Q ACS Synth Biol; 2018 Feb; 7(2):647-654. PubMed ID: 29281883 [TBL] [Abstract][Full Text] [Related]
6. [Recent advances in metabolic engineering of microorganisms for production of tyrosol and its derivatives]. Liu Y; Fu C; Zhang X; Gu B; Hu H; Yang R; Lyu X Sheng Wu Gong Cheng Xue Bao; 2024 Aug; 40(8):2604-2625. PubMed ID: 39174472 [TBL] [Abstract][Full Text] [Related]
7. Metabolic Engineering of Escherichia coli for Production of 2-Phenylethanol and 2-Phenylethyl Acetate from Glucose. Guo D; Zhang L; Kong S; Liu Z; Li X; Pan H J Agric Food Chem; 2018 Jun; 66(23):5886-5891. PubMed ID: 29808680 [TBL] [Abstract][Full Text] [Related]
8. Overproduction of hydroxytyrosol in Saccharomyces cerevisiae by heterologous overexpression of the Escherichia coli 4-hydroxyphenylacetate 3-monooxygenase. Muñiz-Calvo S; Bisquert R; Puig S; Guillamón JM Food Chem; 2020 Mar; 308():125646. PubMed ID: 31654977 [TBL] [Abstract][Full Text] [Related]
9. Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans. Miró-Casas E; Covas MI; Fitó M; Farré-Albadalejo M; Marrugat J; de la Torre R Eur J Clin Nutr; 2003 Jan; 57(1):186-90. PubMed ID: 12548315 [TBL] [Abstract][Full Text] [Related]
10. Metabolic disposition and biological significance of simple phenols of dietary origin: hydroxytyrosol and tyrosol. Rodríguez-Morató J; Boronat A; Kotronoulas A; Pujadas M; Pastor A; Olesti E; Pérez-Mañá C; Khymenets O; Fitó M; Farré M; de la Torre R Drug Metab Rev; 2016 May; 48(2):218-36. PubMed ID: 27186796 [TBL] [Abstract][Full Text] [Related]
11. Engineering of a tyrosol-producing pathway, utilizing simple sugar and the central metabolic tyrosine, in Escherichia coli. Satoh Y; Tajima K; Munekata M; Keasling JD; Lee TS J Agric Food Chem; 2012 Feb; 60(4):979-84. PubMed ID: 22225426 [TBL] [Abstract][Full Text] [Related]
12. Pharmacokinetics and bioavailability of hydroxytyrosol are dependent on the food matrix in humans. Alemán-Jiménez C; Domínguez-Perles R; Medina S; Prgomet I; López-González I; Simonelli-Muñoz A; Campillo-Cano M; Auñón D; Ferreres F; Gil-Izquierdo Á Eur J Nutr; 2021 Mar; 60(2):905-915. PubMed ID: 32524230 [TBL] [Abstract][Full Text] [Related]
13. Efficient production of hydroxytyrosol by directed evolution of HpaB in Escherichia coli. Qi L; Liu C; Peplowski L; Shen W; Yang H; Xia Y; Chen X Biochem Biophys Res Commun; 2023 Jun; 663():16-24. PubMed ID: 37116393 [TBL] [Abstract][Full Text] [Related]
14. Promiscuous enzymatic activity-aided multiple-pathway network design for metabolic flux rearrangement in hydroxytyrosol biosynthesis. Chen W; Yao J; Meng J; Han W; Tao Y; Chen Y; Guo Y; Shi G; He Y; Jin JM; Tang SY Nat Commun; 2019 Feb; 10(1):960. PubMed ID: 30814511 [TBL] [Abstract][Full Text] [Related]
15. Metabolic engineering of Saccharomyces cerevisiae for hydroxytyrosol overproduction directly from glucose. Bisquert R; Planells-Cárcel A; Valera-García E; Guillamón JM; Muñiz-Calvo S Microb Biotechnol; 2022 May; 15(5):1499-1510. PubMed ID: 34689412 [TBL] [Abstract][Full Text] [Related]
16. Promoting FADH Wang H; Wang L; Chen J; Hu M; Fang F; Zhou J J Agric Food Chem; 2023 Nov; 71(44):16681-16690. PubMed ID: 37877749 [TBL] [Abstract][Full Text] [Related]
17. Capillary gas chromatography-mass spectrometry quantitative determination of hydroxytyrosol and tyrosol in human urine after olive oil intake. Miró-Casas E; Farré Albaladejo M; Covas MI; Rodriguez JO; Menoyo Colomer E; Lamuela Raventós RM; de la Torre R Anal Biochem; 2001 Jul; 294(1):63-72. PubMed ID: 11412007 [TBL] [Abstract][Full Text] [Related]
18. Gender differences in plasma and urine metabolites from Sprague-Dawley rats after oral administration of normal and high doses of hydroxytyrosol, hydroxytyrosol acetate, and DOPAC. Domínguez-Perles R; Auñón D; Ferreres F; Gil-Izquierdo A Eur J Nutr; 2017 Feb; 56(1):215-224. PubMed ID: 26463517 [TBL] [Abstract][Full Text] [Related]
19. Metabolism of the olive oil phenols hydroxytyrosol, tyrosol, and hydroxytyrosyl acetate by human hepatoma HepG2 cells. Mateos R; Goya L; Bravo L J Agric Food Chem; 2005 Dec; 53(26):9897-905. PubMed ID: 16366672 [TBL] [Abstract][Full Text] [Related]
20. De Novo Biosynthesis of Anisyl Alcohol and Anisyl Acetate in Engineered Pan H; Li H; Wu S; Lai C; Guo D J Agric Food Chem; 2023 Feb; ():. PubMed ID: 36779799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]