These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34489500)

  • 1. Limited-angle computed tomography with deep image and physics priors.
    Barutcu S; Aslan S; Katsaggelos AK; Gürsoy D
    Sci Rep; 2021 Sep; 11(1):17740. PubMed ID: 34489500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sinogram Inpainting with Generative Adversarial Networks and Shape Priors.
    Valat E; Farrahi K; Blumensath T
    Tomography; 2023 Jun; 9(3):1137-1152. PubMed ID: 37368546
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ADMM-based deep reconstruction for limited-angle CT.
    Wang J; Zeng L; Wang C; Guo Y
    Phys Med Biol; 2019 May; 64(11):115011. PubMed ID: 30999287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Principal component reconstruction (PCR) for cine CBCT with motion learning from 2D fluoroscopy.
    Gao H; Zhang Y; Ren L; Yin FF
    Med Phys; 2018 Jan; 45(1):167-177. PubMed ID: 29136282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. l0 regularization based on a prior image incorporated non-local means for limited-angle X-ray CT reconstruction.
    Zhang L; Zeng L; Guo Y
    J Xray Sci Technol; 2018; 26(3):481-498. PubMed ID: 29562578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regularization of nonlinear decomposition of spectral x-ray projection images.
    Ducros N; Abascal JFP; Sixou B; Rit S; Peyrin F
    Med Phys; 2017 Sep; 44(9):e174-e187. PubMed ID: 28901616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physics-assisted generative adversarial network for X-ray tomography.
    Guo Z; Song JK; Barbastathis G; Glinsky ME; Vaughan CT; Larson KW; Alpert BK; Levine ZH
    Opt Express; 2022 Jun; 30(13):23238-23259. PubMed ID: 36225009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ℓ0 Gradient Minimization Based Image Reconstruction for Limited-Angle Computed Tomography.
    Yu W; Zeng L
    PLoS One; 2015; 10(7):e0130793. PubMed ID: 26158543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-step training deep learning framework for computational imaging without physics priors.
    Shang R; Hoffer-Hawlik K; Wang F; Situ G; Luke GP
    Opt Express; 2021 May; 29(10):15239-15254. PubMed ID: 33985227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint regularization-based image reconstruction by combining data-driven tight frame and total variation for low-dose computed tomography.
    Li J; Zhang W; Cai A; Wang L; Liang N; Zheng Z; Li L; Yan B
    J Xray Sci Technol; 2018; 26(5):785-803. PubMed ID: 29991153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computationally efficient deep neural network for computed tomography image reconstruction.
    Wu D; Kim K; Li Q
    Med Phys; 2019 Nov; 46(11):4763-4776. PubMed ID: 31132144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of clip localization for different kilovoltage imaging modalities as applied to partial breast irradiation setup.
    Buehler A; Ng SK; Lyatskaya Y; Stsepankou D; Hesser J; Zygmanski P
    Med Phys; 2009 Mar; 36(3):821-34. PubMed ID: 19378743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. X-ray computed tomography using curvelet sparse regularization.
    Wieczorek M; Frikel J; Vogel J; Eggl E; Kopp F; Noël PB; Pfeiffer F; Demaret L; Lasser T
    Med Phys; 2015 Apr; 42(4):1555-65. PubMed ID: 25832046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural networks-based regularization for large-scale medical image reconstruction.
    Kofler A; Haltmeier M; Schaeffter T; Kachelrieß M; Dewey M; Wald C; Kolbitsch C
    Phys Med Biol; 2020 Jul; 65(13):135003. PubMed ID: 32492660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A linear programming approach to limited angle 3D reconstruction from DSA projections.
    Weber S; Schüle T; Schnörr C; Hornegger J
    Methods Inf Med; 2004; 43(4):320-6. PubMed ID: 15472741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstruction of porous media from extremely limited information using conditional generative adversarial networks.
    Feng J; He X; Teng Q; Ren C; Chen H; Li Y
    Phys Rev E; 2019 Sep; 100(3-1):033308. PubMed ID: 31639909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MAP estimation with structural priors for fluorescence molecular tomography.
    Zhang G; Cao X; Zhang B; Liu F; Luo J; Bai J
    Phys Med Biol; 2013 Jan; 58(2):351-72. PubMed ID: 23257468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artifact correction in low-dose dental CT imaging using Wasserstein generative adversarial networks.
    Hu Z; Jiang C; Sun F; Zhang Q; Ge Y; Yang Y; Liu X; Zheng H; Liang D
    Med Phys; 2019 Apr; 46(4):1686-1696. PubMed ID: 30697765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Edge-preserving reconstruction from sparse projections of limited-angle computed tomography using ℓ
    Yu W; Wang C; Huang M
    Rev Sci Instrum; 2017 Apr; 88(4):043703. PubMed ID: 28456252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.