These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 34489636)

  • 1. A Review on Signal Processing Approaches to Reduce Calibration Time in EEG-Based Brain-Computer Interface.
    Huang X; Xu Y; Hua J; Yi W; Yin H; Hu R; Wang S
    Front Neurosci; 2021; 15():733546. PubMed ID: 34489636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Source Semi-Supervised Transfer Learning (DS3TL) for Cross-Subject EEG Classification.
    Jiang X; Meng L; Wang Z; Wu D
    IEEE Trans Biomed Eng; 2024 Apr; 71(4):1308-1318. PubMed ID: 37971908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Cross-Subject Transfer Learning Based on Riemannian Tangent Space for Motor Imagery Brain-Computer Interface.
    Xu Y; Huang X; Lan Q
    Front Neurosci; 2021; 15():779231. PubMed ID: 34803600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Transfer Learning in EEG Decoding Based on Brain-Computer Interfaces: A Review.
    Zhang K; Xu G; Zheng X; Li H; Zhang S; Yu Y; Liang R
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covariate shift estimation based adaptive ensemble learning for handling non-stationarity in motor imagery related EEG-based brain-computer interface.
    Raza H; Rathee D; Zhou SM; Cecotti H; Prasad G
    Neurocomputing (Amst); 2019 May; 343():154-166. PubMed ID: 32226230
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra- and Inter-subject Variability in EEG-Based Sensorimotor Brain Computer Interface: A Review.
    Saha S; Baumert M
    Front Comput Neurosci; 2019; 13():87. PubMed ID: 32038208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. T-TIME: Test-Time Information Maximization Ensemble for Plug-and-Play BCIs.
    Li S; Wang Z; Luo H; Ding L; Wu D
    IEEE Trans Biomed Eng; 2024 Feb; 71(2):423-432. PubMed ID: 37552589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-class motor imagery EEG classification using collaborative representation-based semi-supervised extreme learning machine.
    She Q; Zou J; Luo Z; Nguyen T; Li R; Zhang Y
    Med Biol Eng Comput; 2020 Sep; 58(9):2119-2130. PubMed ID: 32676841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An inter-subject model to reduce the calibration time for motion imagination-based brain-computer interface.
    Zou Y; Zhao X; Chu Y; Zhao Y; Xu W; Han J
    Med Biol Eng Comput; 2019 Apr; 57(4):939-952. PubMed ID: 30498878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer learning with large-scale data in brain-computer interfaces.
    Chun-Shu Wei ; Yuan-Pin Lin ; Yu-Te Wang ; Chin-Teng Lin ; Tzyy-Ping Jung
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4666-4669. PubMed ID: 28269314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constructing a Personalized Cross-Day EEG-Based Emotion-Classification Model Using Transfer Learning.
    Lin YP
    IEEE J Biomed Health Inform; 2020 May; 24(5):1255-1264. PubMed ID: 31403448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning a common dictionary for subject-transfer decoding with resting calibration.
    Morioka H; Kanemura A; Hirayama J; Shikauchi M; Ogawa T; Ikeda S; Kawanabe M; Ishii S
    Neuroimage; 2015 May; 111():167-78. PubMed ID: 25682943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Survey on Deep Learning-Based Short/Zero-Calibration Approaches for EEG-Based Brain-Computer Interfaces.
    Ko W; Jeon E; Jeong S; Phyo J; Suk HI
    Front Hum Neurosci; 2021; 15():643386. PubMed ID: 34140883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subject-to-subject adaptation to reduce calibration time in motor imagery-based brain-computer interface.
    Arvaneh M; Robertson I; Ward TE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6501-4. PubMed ID: 25571485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Language Model-Guided Classifier Adaptation for Brain-Computer Interfaces for Communication.
    Chen XJ; Collins LM; Mainsah BO
    Conf Proc IEEE Int Conf Syst Man Cybern; 2022 Oct; 2022():1642-1647. PubMed ID: 36776946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A subject-transfer framework for obviating inter- and intra-subject variability in EEG-based drowsiness detection.
    Wei CS; Lin YP; Wang YT; Lin CT; Jung TP
    Neuroimage; 2018 Jul; 174():407-419. PubMed ID: 29578026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence of Variabilities in EEG Dynamics During Motor Imagery-Based Multiclass Brain-Computer Interface.
    Saha S; Ahmed KIU; Mostafa R; Hadjileontiadis L; Khandoker A
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):371-382. PubMed ID: 29432108
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel semi-supervised meta learning method for subject-transfer brain-computer interface.
    Li J; Wang F; Huang H; Qi F; Pan J
    Neural Netw; 2023 Jun; 163():195-204. PubMed ID: 37062178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Neural Signal Classification in a Rapid Serial Visual Presentation Task Using Active Learning.
    Marathe AR; Lawhern VJ; Wu D; Slayback D; Lance BJ
    IEEE Trans Neural Syst Rehabil Eng; 2016 Mar; 24(3):333-43. PubMed ID: 26600162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving session-to-session transfer performance of motor imagery-based BCI using Adaptive Extreme Learning Machine.
    Bamdadian A; Guan C; Ang KK; Xu J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2188-91. PubMed ID: 24110156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.