These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 34489660)
1. Mental Workload Estimation Based on Physiological Features for Pilot-UAV Teaming Applications. Singh G; Chanel CPC; Roy RN Front Hum Neurosci; 2021; 15():692878. PubMed ID: 34489660 [TBL] [Abstract][Full Text] [Related]
2. Effects of Touch, Voice, and Multimodal Input, and Task Load on Multiple-UAV Monitoring Performance During Simulated Manned-Unmanned Teaming in a Military Helicopter. Levulis SJ; DeLucia PR; Kim SY Hum Factors; 2018 Dec; 60(8):1117-1129. PubMed ID: 30063411 [TBL] [Abstract][Full Text] [Related]
3. Electroencephalographic Workload Indicators During Teleoperation of an Unmanned Aerial Vehicle Shepherding a Swarm of Unmanned Ground Vehicles in Contested Environments. Fernandez Rojas R; Debie E; Fidock J; Barlow M; Kasmarik K; Anavatti S; Garratt M; Abbass H Front Neurosci; 2020; 14():40. PubMed ID: 32116498 [No Abstract] [Full Text] [Related]
4. Multisubject "Learning" for Mental Workload Classification Using Concurrent EEG, fNIRS, and Physiological Measures. Liu Y; Ayaz H; Shewokis PA Front Hum Neurosci; 2017; 11():389. PubMed ID: 28798675 [TBL] [Abstract][Full Text] [Related]
5. Autonomous Unmanned Aerial Vehicles in Search and Rescue Missions Using Real-Time Cooperative Model Predictive Control. de Alcantara Andrade FA; Reinier Hovenburg A; Netto de Lima L; Dahlin Rodin C; Johansen TA; Storvold R; Moraes Correia CA; Barreto Haddad D Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547143 [TBL] [Abstract][Full Text] [Related]
6. Research on the Applicability of Touchscreens in Manned/Unmanned Aerial Vehicle Cooperative Missions. Xue H; Zhang Q; Zhang X Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366137 [TBL] [Abstract][Full Text] [Related]
7. Subjective and objective assessments of mental workload for UAV operations. Li KW; Lu Y; Li N Work; 2022; 72(1):291-301. PubMed ID: 35431209 [TBL] [Abstract][Full Text] [Related]
8. Facilitating the Work of Unmanned Aerial Vehicle Operators Using Artificial Intelligence: An Intelligent Filter for Command-and-Control Maps to Reduce Cognitive Workload. Zak Y; Parmet Y; Oron-Gilad T Hum Factors; 2023 Nov; 65(7):1345-1360. PubMed ID: 35392697 [TBL] [Abstract][Full Text] [Related]
9. Machine-Learning Based Monitoring of Cognitive Workload in Rescue Missions With Drones. DellrAgnola F; Jao PK; Arza A; Chavarriaga R; Millan JDR; Floreano D; Atienza D IEEE J Biomed Health Inform; 2022 Sep; 26(9):4751-4762. PubMed ID: 35759604 [TBL] [Abstract][Full Text] [Related]
10. Remote Marker-Based Tracking for UAV Landing Using Visible-Light Camera Sensor. Nguyen PH; Kim KW; Lee YW; Park KR Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28867775 [TBL] [Abstract][Full Text] [Related]
11. Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data. Gebrehiwot A; Hashemi-Beni L; Thompson G; Kordjamshidi P; Langan TE Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934695 [TBL] [Abstract][Full Text] [Related]
12. Improving pilot mental workload evaluation with combined measures. Wanyan X; Zhuang D; Zhang H Biomed Mater Eng; 2014; 24(6):2283-90. PubMed ID: 25226928 [TBL] [Abstract][Full Text] [Related]
13. Assessment of operators' mental workload using physiological and subjective measures in cement, city traffic and power plant control centers. Fallahi M; Motamedzade M; Heidarimoghadam R; Soltanian AR; Miyake S Health Promot Perspect; 2016; 6(2):96-103. PubMed ID: 27386425 [TBL] [Abstract][Full Text] [Related]
14. Real-time prediction of short-timescale fluctuations in cognitive workload. Boehm U; Matzke D; Gretton M; Castro S; Cooper J; Skinner M; Strayer D; Heathcote A Cogn Res Princ Implic; 2021 Apr; 6(1):30. PubMed ID: 33835271 [TBL] [Abstract][Full Text] [Related]
15. UAV-guided navigation for ground robot tele-operation in a military reconnaissance environment. Chen JY Ergonomics; 2010 Aug; 53(8):940-50. PubMed ID: 20658388 [TBL] [Abstract][Full Text] [Related]
16. Measurement and identification of mental workload during simulated computer tasks with multimodal methods and machine learning. Ding Y; Cao Y; Duffy VG; Wang Y; Zhang X Ergonomics; 2020 Jul; 63(7):896-908. PubMed ID: 32330080 [TBL] [Abstract][Full Text] [Related]
17. How Neurophysiological Measures Can be Used to Enhance the Evaluation of Remote Tower Solutions. Aricò P; Reynal M; Di Flumeri G; Borghini G; Sciaraffa N; Imbert JP; Hurter C; Terenzi M; Ferreira A; Pozzi S; Betti V; Marucci M; Telea AC; Babiloni F Front Hum Neurosci; 2019; 13():303. PubMed ID: 31551735 [TBL] [Abstract][Full Text] [Related]
18. Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV. de Oliveira DC; Wehrmeister MA Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30002290 [TBL] [Abstract][Full Text] [Related]
19. Detection of variations in cognitive workload using multi-modality physiological sensors and a large margin unbiased regression machine. Zhang H; Zhu Y; Maniyeri J; Guan C Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2985-8. PubMed ID: 25570618 [TBL] [Abstract][Full Text] [Related]
20. Balancing search and target response in cooperative unmanned aerial vehicle (UAV) teams. Jin Y; Liao Y; Minai AA; Polycarpou MM IEEE Trans Syst Man Cybern B Cybern; 2006 Jun; 36(3):571-87. PubMed ID: 16761811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]