These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

464 related articles for article (PubMed ID: 34489721)

  • 1. Molecular Signaling Mechanisms and Function of Natriuretic Peptide Receptor-A in the Pathophysiology of Cardiovascular Homeostasis.
    Pandey KN
    Front Physiol; 2021; 12():693099. PubMed ID: 34489721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Guanylyl cyclase / atrial natriuretic peptide receptor-A: role in the pathophysiology of cardiovascular regulation.
    Pandey KN
    Can J Physiol Pharmacol; 2011 Aug; 89(8):557-73. PubMed ID: 21815745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and genetic aspects of guanylyl cyclase natriuretic peptide receptor-A in regulation of blood pressure and renal function.
    Pandey KN
    Physiol Genomics; 2018 Nov; 50(11):913-928. PubMed ID: 30169131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guanylyl cyclase/natriuretic peptide receptor-A: Identification, molecular characterization, and physiological genomics.
    Pandey KN
    Front Mol Neurosci; 2022; 15():1076799. PubMed ID: 36683859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca(2+) release, and activation of protein kinase C.
    Pandey KN
    Front Mol Neurosci; 2014; 7():75. PubMed ID: 25202235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pro-Atrial Natriuretic Peptide: A Novel Guanylyl Cyclase-A Receptor Activator That Goes Beyond Atrial and B-Type Natriuretic Peptides.
    Ichiki T; Huntley BK; Sangaralingham SJ; Burnett JC
    JACC Heart Fail; 2015 Sep; 3(9):715-23. PubMed ID: 26362447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-Dependent Downregulation of Guanylyl Cyclase/Natriuretic Peptide Receptor-A: Role of miR-128 and miR-195.
    Khurana ML; Mani I; Kumar P; Ramasamy C; Pandey KN
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular trafficking and metabolic turnover of ligand-bound guanylyl cyclase/atrial natriuretic peptide receptor-A into subcellular compartments.
    Pandey KN
    Mol Cell Biochem; 2002 Jan; 230(1-2):61-72. PubMed ID: 11952097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autocrine and paracrine actions of natriuretic peptides in the heart.
    D'Souza SP; Davis M; Baxter GF
    Pharmacol Ther; 2004 Feb; 101(2):113-29. PubMed ID: 14761702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The natriuretic peptide system in the brain: implications in the central control of cardiovascular and neuroendocrine functions.
    Imura H; Nakao K; Itoh H
    Front Neuroendocrinol; 1992 Jul; 13(3):217-49. PubMed ID: 1334000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging Roles of Natriuretic Peptides and their Receptors in Pathophysiology of Hypertension and Cardiovascular Regulation.
    Pandey KN
    J Am Soc Hypertens; 2008; 2(4):210-26. PubMed ID: 19746200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular biology and biochemistry of natriuretic peptide family.
    Ogawa Y; Itoh H; Nakao K
    Clin Exp Pharmacol Physiol; 1995 Jan; 22(1):49-53. PubMed ID: 7768034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutral endopeptidase inhibition potentiates the effects of natriuretic peptides in renin transgenic rats.
    Wegner M; Ganten D; Stasch JP
    Hypertens Res; 1996 Dec; 19(4):229-38. PubMed ID: 8986453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natriuretic peptide pathways in heart failure: further therapeutic possibilities.
    Sangaralingham SJ; Kuhn M; Cannone V; Chen HH; Burnett JC
    Cardiovasc Res; 2023 Feb; 118(18):3416-3433. PubMed ID: 36004816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clathrin-dependent internalization, signaling, and metabolic processing of guanylyl cyclase/natriuretic peptide receptor-A.
    Somanna NK; Mani I; Tripathi S; Pandey KN
    Mol Cell Biochem; 2018 Apr; 441(1-2):135-150. PubMed ID: 28900772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genetic contribution of the natriuretic peptide system to cardiovascular diseases.
    Nakayama T
    Endocr J; 2005 Feb; 52(1):11-21. PubMed ID: 15758553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular physiology of natriuretic peptide signalling.
    Kuhn M
    Basic Res Cardiol; 2004 Mar; 99(2):76-82. PubMed ID: 14963665
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological effects of natriuretic peptides in the heart are mediated by multiple receptor subtypes.
    Moghtadaei M; Polina I; Rose RA
    Prog Biophys Mol Biol; 2016 Jan; 120(1-3):37-49. PubMed ID: 26701223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased effects of C-type natriuretic peptide on cardiac ventricular contractility and relaxation in guanylyl cyclase A-deficient mice.
    Pierkes M; Gambaryan S; Bokník P; Lohmann SM; Schmitz W; Potthast R; Holtwick R; Kuhn M
    Cardiovasc Res; 2002 Mar; 53(4):852-61. PubMed ID: 11922895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochemistry and physiology of the natriuretic peptide receptor guanylyl cyclases.
    Tremblay J; Desjardins R; Hum D; Gutkowska J; Hamet P
    Mol Cell Biochem; 2002 Jan; 230(1-2):31-47. PubMed ID: 11952095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.