These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 34489855)
1. Automated Movement Assessment in Stroke Rehabilitation. Ahmed T; Thopalli K; Rikakis T; Turaga P; Kelliher A; Huang JB; Wolf SL Front Neurol; 2021; 12():720650. PubMed ID: 34489855 [TBL] [Abstract][Full Text] [Related]
2. A Hierarchical Bayesian Model for Cyber-Human Assessment of Movement in Upper Extremity Stroke Rehabilitation. Ahmed T; Rikakis T; Kelliher A; Wolf SL IEEE Trans Neural Syst Rehabil Eng; 2024; 32():3157-3166. PubMed ID: 39186425 [TBL] [Abstract][Full Text] [Related]
3. Cellphone-Based Automated Fugl-Meyer Assessment to Evaluate Upper Extremity Motor Function After Stroke. Song X; Chen S; Jia J; Shull PB IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2186-2195. PubMed ID: 31502981 [TBL] [Abstract][Full Text] [Related]
4. Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis. Gauthier LV; Kane C; Borstad A; Strahl N; Uswatte G; Taub E; Morris D; Hall A; Arakelian M; Mark V BMC Neurol; 2017 Jun; 17(1):109. PubMed ID: 28595611 [TBL] [Abstract][Full Text] [Related]
5. Segmenting human motion for automated rehabilitation exercise analysis. Feng-Shun Lin J; Kulić D Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2881-4. PubMed ID: 23366526 [TBL] [Abstract][Full Text] [Related]
6. Decision support for stroke rehabilitation therapy via describable attribute-based decision trees. Venkataraman V; Turaga P; Lehrer N; Baran M; Rikakis T; Wolf SL Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3154-9. PubMed ID: 25570660 [TBL] [Abstract][Full Text] [Related]
7. [Remote intelligent Brunnstrom assessment system for upper limb rehabilitation for post-stroke based on extreme learning machine]. Wang Y; Yu L; Fu J; Fang Q Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Apr; 31(2):251-6. PubMed ID: 25039122 [TBL] [Abstract][Full Text] [Related]
8. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
9. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology. Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221 [TBL] [Abstract][Full Text] [Related]
11. Synergy-Based FES for Post-Stroke Rehabilitation of Upper-Limb Motor Functions. Niu CM; Bao Y; Zhuang C; Li S; Wang T; Cui L; Xie Q; Lan N IEEE Trans Neural Syst Rehabil Eng; 2019 Feb; 27(2):256-264. PubMed ID: 30763238 [TBL] [Abstract][Full Text] [Related]
12. An Expert-Knowledge-Based Graph Convolutional Network for Skeleton- Based Physical Rehabilitation Exercises Assessment. He T; Chen Y; Wang L; Cheng H IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1916-1925. PubMed ID: 38743552 [TBL] [Abstract][Full Text] [Related]
13. Online Segmentation of Human Motion for Automated Rehabilitation Exercise Analysis. Lin JF; Kulić D IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):168-80. PubMed ID: 23661321 [TBL] [Abstract][Full Text] [Related]
14. Capture, learning, and classification of upper extremity movement primitives in healthy controls and stroke patients. Guerra J; Uddin J; Nilsen D; Mclnerney J; Fadoo A; Omofuma IB; Hughes S; Agrawal S; Allen P; Schambra HM IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():547-554. PubMed ID: 28813877 [TBL] [Abstract][Full Text] [Related]
15. Commercial head-mounted display virtual reality for upper extremity rehabilitation in chronic stroke: a single-case design study. Erhardsson M; Alt Murphy M; Sunnerhagen KS J Neuroeng Rehabil; 2020 Nov; 17(1):154. PubMed ID: 33228710 [TBL] [Abstract][Full Text] [Related]
16. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
17. Development and Clinical Evaluation of a Web-Based Upper Limb Home Rehabilitation System Using a Smartwatch and Machine Learning Model for Chronic Stroke Survivors: Prospective Comparative Study. Chae SH; Kim Y; Lee KS; Park HS JMIR Mhealth Uhealth; 2020 Jul; 8(7):e17216. PubMed ID: 32480361 [TBL] [Abstract][Full Text] [Related]
18. Upper Extremity Functional Evaluation by Fugl-Meyer Assessment Scoring Using Depth-Sensing Camera in Hemiplegic Stroke Patients. Kim WS; Cho S; Baek D; Bang H; Paik NJ PLoS One; 2016; 11(7):e0158640. PubMed ID: 27367518 [TBL] [Abstract][Full Text] [Related]
19. Detecting compensatory movements of stroke survivors using pressure distribution data and machine learning algorithms. Cai S; Li G; Zhang X; Huang S; Zheng H; Ma K; Xie L J Neuroeng Rehabil; 2019 Nov; 16(1):131. PubMed ID: 31684970 [TBL] [Abstract][Full Text] [Related]
20. A novel adaptive mixed reality system for stroke rehabilitation: principles, proof of concept, and preliminary application in 2 patients. Chen Y; Duff M; Lehrer N; Liu SM; Blake P; Wolf SL; Sundaram H; Rikakis T Top Stroke Rehabil; 2011; 18(3):212-30. PubMed ID: 21642059 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]