BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 34489999)

  • 21. Global analysis of lysine 2-hydroxyisobutyrylation during
    Zhang K; Cao H; Ma Y; Si H; Zang J; Bai H; Yu L; Pang X; Zhou F; Xing J; Dong J
    Front Plant Sci; 2022; 13():1000039. PubMed ID: 36186065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cytological and molecular characterization of quantitative trait locus qRfg1, which confers resistance to gibberella stalk rot in maize.
    Ye J; Guo Y; Zhang D; Zhang N; Wang C; Xu M
    Mol Plant Microbe Interact; 2013 Dec; 26(12):1417-28. PubMed ID: 23902264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Maize stalk rot caused by
    Zhang K; Wang L; Si H; Guo H; Liu J; Jia J; Su Q; Wang Y; Zang J; Xing J; Dong J
    Front Microbiol; 2022; 13():986401. PubMed ID: 36338067
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Beneficial Rhizobacterium Triggers Induced Systemic Resistance of Maize to Gibberella Stalk Rot via Calcium Signaling.
    Cao Y; Wang Y; Gui C; Nguvo KJ; Ma L; Wang Q; Shen Q; Zhang R; Gao X
    Mol Plant Microbe Interact; 2023 Aug; 36(8):516-528. PubMed ID: 37188493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transcriptional Responses of
    Naeem M; Munir M; Li H; Raza MA; Song C; Wu X; Irshad G; Khalid MHB; Yang W; Chang X
    J Fungi (Basel); 2021 May; 7(6):. PubMed ID: 34072279
    [No Abstract]   [Full Text] [Related]  

  • 26. Development of an inoculation technique for rapidly evaluating maize inbred lines for resistance to stalk rot caused by
    Jiang W; Han W; Wang R; Li Y; Hu G; Yang J; Jiang D; Han W; Wang M; Li G
    Plant Dis; 2020 Dec; ():. PubMed ID: 33373281
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Trichothecene Genotype of Fusarium graminearum Isolates from Soybean (Glycine max) Seedling and Root Diseases in the United States.
    Ellis ML; Munkvold GP
    Plant Dis; 2014 Jul; 98(7):1012. PubMed ID: 30708932
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mapping of QTLs for resistance to Gibberella ear rot, in corn, caused by Fusarium graminearum.
    Ali ML; Taylor JH; Jie L; Sun G; William M; Kasha KJ; Reid LM; Pauls KP
    Genome; 2005 Jun; 48(3):521-33. PubMed ID: 16121248
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential gene expression in kernels and silks of maize lines with contrasting levels of ear rot resistance after Fusarium verticillioides infection.
    Lanubile A; Pasini L; Marocco A
    J Plant Physiol; 2010 Nov; 167(16):1398-406. PubMed ID: 20650545
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacterial endophytes from wild maize suppress Fusarium graminearum in modern maize and inhibit mycotoxin accumulation.
    Mousa WK; Shearer CR; Limay-Rios V; Zhou T; Raizada MN
    Front Plant Sci; 2015; 6():805. PubMed ID: 26500660
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage.
    Desjardins AE; Proctor RH
    Fungal Biol; 2011 Jan; 115(1):38-48. PubMed ID: 21215953
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isobaric tags for relative and absolute quantification-based proteomic analysis of defense responses triggered by the fungal pathogen Fusarium graminearum in wheat.
    Wang B; Li X; Chen W; Kong L
    J Proteomics; 2019 Sep; 207():103442. PubMed ID: 31326557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ethylene signaling regulates natural variation in the abundance of antifungal acetylated diferuloylsucroses and Fusarium graminearum resistance in maize seedling roots.
    Zhou S; Zhang YK; Kremling KA; Ding Y; Bennett JS; Bae JS; Kim DK; Ackerman HH; Kolomiets MV; Schmelz EA; Schroeder FC; Buckler ES; Jander G
    New Phytol; 2019 Mar; 221(4):2096-2111. PubMed ID: 30289553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Dominance of
    Machado FJ; Kuhnem PR; Casa RT; McMaster N; Schmale DG; Vaillancourt LJ; Del Ponte EM
    Phytopathology; 2021 Oct; 111(10):1774-1781. PubMed ID: 33656353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The Auxin-Regulated Protein ZmAuxRP1 Coordinates the Balance between Root Growth and Stalk Rot Disease Resistance in Maize.
    Ye J; Zhong T; Zhang D; Ma C; Wang L; Yao L; Zhang Q; Zhu M; Xu M
    Mol Plant; 2019 Mar; 12(3):360-373. PubMed ID: 30853061
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of Environmental Conditions and Agronomic Practices on the Prevalence of
    Pfordt A; Ramos Romero L; Schiwek S; Karlovsky P; von Tiedemann A
    Pathogens; 2020 Mar; 9(3):. PubMed ID: 32245280
    [No Abstract]   [Full Text] [Related]  

  • 37. Host-preferential Fusarium graminearum gene expression during infection of wheat, barley, and maize.
    Harris LJ; Balcerzak M; Johnston A; Schneiderman D; Ouellet T
    Fungal Biol; 2016 Jan; 120(1):111-23. PubMed ID: 26693688
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Burkholderia ambifaria H8 as an effective biocontrol strain against maize stalk rot via producing volatile dimethyl disulfide.
    Chen X; Liu J; Chen AJ; Wang L; Jiang X; Gong A; Liu W; Wu H
    Pest Manag Sci; 2024 Apr; ():. PubMed ID: 38578571
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fungal Species Composition in Maize Stalks in Relation to European Corn Borer Injury and Transgenic Insect Protection.
    Gatch EW; Munkvold GP
    Plant Dis; 2002 Oct; 86(10):1156-1162. PubMed ID: 30818511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational identification of genetic subnetwork modules associated with maize defense response to Fusarium verticillioides.
    Kim M; Zhang H; Woloshuk C; Shim WB; Yoon BJ
    BMC Bioinformatics; 2015; 16 Suppl 13(Suppl 13):S12. PubMed ID: 26423221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.