BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34490103)

  • 21. A Preliminary Experience of Implementing Deep-Learning Based Auto-Segmentation in Head and Neck Cancer: A Study on Real-World Clinical Cases.
    Zhong Y; Yang Y; Fang Y; Wang J; Hu W
    Front Oncol; 2021; 11():638197. PubMed ID: 34026615
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Segmentation of organs-at-risk in cervical cancer CT images with a convolutional neural network.
    Liu Z; Liu X; Xiao B; Wang S; Miao Z; Sun Y; Zhang F
    Phys Med; 2020 Jan; 69():184-191. PubMed ID: 31918371
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Auto-segmentation of low-risk clinical target volume for head and neck radiation therapy.
    Yang J; Beadle BM; Garden AS; Gunn B; Rosenthal D; Ang K; Frank S; Williamson R; Balter P; Court L; Dong L
    Pract Radiat Oncol; 2014; 4(1):e31-7. PubMed ID: 24621429
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional deep neural network for automatic delineation of cervical cancer in planning computed tomography images.
    Ding Y; Chen Z; Wang Z; Wang X; Hu D; Ma P; Ma C; Wei W; Li X; Xue X; Wang X
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13566. PubMed ID: 35192243
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of auto-segmentation accuracy of cloud-based artificial intelligence and atlas-based models.
    Urago Y; Okamoto H; Kaneda T; Murakami N; Kashihara T; Takemori M; Nakayama H; Iijima K; Chiba T; Kuwahara J; Katsuta S; Nakamura S; Chang W; Saitoh H; Igaki H
    Radiat Oncol; 2021 Sep; 16(1):175. PubMed ID: 34503533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Automatic Segmentation of Clinical Target Volumes for Post-Modified Radical Mastectomy Radiotherapy Using Convolutional Neural Networks.
    Liu Z; Liu F; Chen W; Liu X; Hou X; Shen J; Guan H; Zhen H; Wang S; Chen Q; Chen Y; Zhang F
    Front Oncol; 2020; 10():581347. PubMed ID: 33665160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-stage deep learning model for fully automated pancreas segmentation on computed tomography: Comparison with intra-reader and inter-reader reliability at full and reduced radiation dose on an external dataset.
    Panda A; Korfiatis P; Suman G; Garg SK; Polley EC; Singh DP; Chari ST; Goenka AH
    Med Phys; 2021 May; 48(5):2468-2481. PubMed ID: 33595105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assembling High-Quality Lymph Node Clinical Target Volumes for Cervical Cancer Radiotherapy Using a Deep Learning-Based Approach.
    Jiang X; Zhang S; Fu Y; Yu H; Tang H; Wu X
    Curr Med Imaging; 2023 Sep; ():. PubMed ID: 37724668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical evaluation of deep learning and atlas-based auto-segmentation for organs at risk delineation.
    Yamauchi R; Itazawa T; Kobayashi T; Kashiyama S; Akimoto H; Mizuno N; Kawamori J
    Med Dosim; 2023 Dec; ():. PubMed ID: 38061916
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep learning vs. atlas-based models for fast auto-segmentation of the masticatory muscles on head and neck CT images.
    Chen W; Li Y; Dyer BA; Feng X; Rao S; Benedict SH; Chen Q; Rong Y
    Radiat Oncol; 2020 Jul; 15(1):176. PubMed ID: 32690103
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DeepTarget: Gross tumor and clinical target volume segmentation in esophageal cancer radiotherapy.
    Jin D; Guo D; Ho TY; Harrison AP; Xiao J; Tseng CK; Lu L
    Med Image Anal; 2021 Feb; 68():101909. PubMed ID: 33341494
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PSA-Net: Deep learning-based physician style-aware segmentation network for postoperative prostate cancer clinical target volumes.
    Balagopal A; Morgan H; Dohopolski M; Timmerman R; Shan J; Heitjan DF; Liu W; Nguyen D; Hannan R; Garant A; Desai N; Jiang S
    Artif Intell Med; 2021 Nov; 121():102195. PubMed ID: 34763810
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of Deep Learning Clinical Target Volumes Auto-Contouring for Magnetic Resonance Imaging-Guided Online Adaptive Treatment of Rectal Cancer.
    Ferreira Silvério N; van den Wollenberg W; Betgen A; Wiersema L; Marijnen C; Peters F; van der Heide UA; Simões R; Janssen T
    Adv Radiat Oncol; 2024 Jun; 9(6):101483. PubMed ID: 38706833
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automatic segmentation of magnetic resonance images for high-dose-rate cervical cancer brachytherapy using deep learning.
    Yoganathan SA; Paul SN; Paloor S; Torfeh T; Chandramouli SH; Hammoud R; Al-Hammadi N
    Med Phys; 2022 Mar; 49(3):1571-1584. PubMed ID: 35094405
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical Evaluation of an Auto-Segmentation Tool for Spine SBRT Treatment.
    Chen Y; Vinogradskiy Y; Yu Y; Shi W; Liu H
    Front Oncol; 2022; 12():842579. PubMed ID: 35359361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma.
    Lin L; Dou Q; Jin YM; Zhou GQ; Tang YQ; Chen WL; Su BA; Liu F; Tao CJ; Jiang N; Li JY; Tang LL; Xie CM; Huang SM; Ma J; Heng PA; Wee JTS; Chua MLK; Chen H; Sun Y
    Radiology; 2019 Jun; 291(3):677-686. PubMed ID: 30912722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fully automatic and robust segmentation of the clinical target volume for radiotherapy of breast cancer using big data and deep learning.
    Men K; Zhang T; Chen X; Chen B; Tang Y; Wang S; Li Y; Dai J
    Phys Med; 2018 Jun; 50():13-19. PubMed ID: 29891089
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Validation of a Magnetic Resonance Imaging-based Auto-contouring Software Tool for Gross Tumour Delineation in Head and Neck Cancer Radiotherapy Planning.
    Doshi T; Wilson C; Paterson C; Lamb C; James A; MacKenzie K; Soraghan J; Petropoulakis L; Di Caterina G; Grose D
    Clin Oncol (R Coll Radiol); 2017 Jan; 29(1):60-67. PubMed ID: 27780693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-risk clinical target volume delineation in CT-guided cervical cancer brachytherapy: impact of information from FIGO stage with or without systematic inclusion of 3D documentation of clinical gynecological examination.
    Hegazy N; Pötter R; Kirisits C; Berger D; Federico M; Sturdza A; Nesvacil N
    Acta Oncol; 2013 Oct; 52(7):1345-52. PubMed ID: 23905674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Automatic segmentation and applicator reconstruction for CT-based brachytherapy of cervical cancer using 3D convolutional neural networks.
    Zhang D; Yang Z; Jiang S; Zhou Z; Meng M; Wang W
    J Appl Clin Med Phys; 2020 Oct; 21(10):158-169. PubMed ID: 32991783
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.