BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 34490847)

  • 1. A universal pocket in fatty acyl-AMP ligases ensures redirection of fatty acid pool away from coenzyme A-based activation.
    Patil GS; Kinatukara P; Mondal S; Shambhavi S; Patel KD; Pramanik S; Dubey N; Narasimhan S; Madduri MK; Pal B; Gokhale RS; Sankaranarayanan R
    Elife; 2021 Sep; 10():. PubMed ID: 34490847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic understanding of bacterial FAALs and the role of their homologs in eukaryotes.
    Mondal S; Pal B; Sankaranarayanan R
    Proteins; 2023 Aug; ():. PubMed ID: 37615273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatty acyl-AMP ligases and polyketide synthases are unique enzymes of lipid biosynthetic machinery in Mycobacterium tuberculosis.
    Mohanty D; Sankaranarayanan R; Gokhale RS
    Tuberculosis (Edinb); 2011 Sep; 91(5):448-55. PubMed ID: 21601529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structures of Mycobacterium tuberculosis FadD10 protein reveal a new type of adenylate-forming enzyme.
    Liu Z; Ioerger TR; Wang F; Sacchettini JC
    J Biol Chem; 2013 Jun; 288(25):18473-83. PubMed ID: 23625916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and functional studies of fatty acyl adenylate ligases from E. coli and L. pneumophila.
    Zhang Z; Zhou R; Sauder JM; Tonge PJ; Burley SK; Swaminathan S
    J Mol Biol; 2011 Feb; 406(2):313-24. PubMed ID: 21185305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic and functional insights into fatty acid activation in Mycobacterium tuberculosis.
    Arora P; Goyal A; Natarajan VT; Rajakumara E; Verma P; Gupta R; Yousuf M; Trivedi OA; Mohanty D; Tyagi A; Sankaranarayanan R; Gokhale RS
    Nat Chem Biol; 2009 Mar; 5(3):166-73. PubMed ID: 19182784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular basis of the functional divergence of fatty acyl-AMP ligase biosynthetic enzymes of Mycobacterium tuberculosis.
    Goyal A; Verma P; Anandhakrishnan M; Gokhale RS; Sankaranarayanan R
    J Mol Biol; 2012 Feb; 416(2):221-38. PubMed ID: 22206988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria.
    Trivedi OA; Arora P; Sridharan V; Tickoo R; Mohanty D; Gokhale RS
    Nature; 2004 Mar; 428(6981):441-5. PubMed ID: 15042094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promiscuous fatty acyl CoA ligases produce acyl-CoA and acyl-SNAC precursors for polyketide biosynthesis.
    Arora P; Vats A; Saxena P; Mohanty D; Gokhale RS
    J Am Chem Soc; 2005 Jul; 127(26):9388-9. PubMed ID: 15984864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of small-molecule inhibitors of fatty acyl-AMP and fatty acyl-CoA ligases in Mycobacterium tuberculosis.
    Baran M; Grimes KD; Sibbald PA; Fu P; Boshoff HIM; Wilson DJ; Aldrich CC
    Eur J Med Chem; 2020 Sep; 201():112408. PubMed ID: 32574901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fatty acyl-AMP ligase involvement in the production of alkylresorcylic acid by a Myxococcus xanthus type III polyketide synthase.
    Hayashi T; Kitamura Y; Funa N; Ohnishi Y; Horinouchi S
    Chembiochem; 2011 Sep; 12(14):2166-76. PubMed ID: 21815236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing a toolkit for precursor-directed polyketide biosynthesis: exploring substrate promiscuities of acid-CoA ligases.
    Go MK; Chow JY; Cheung VW; Lim YP; Yew WS
    Biochemistry; 2012 Jun; 51(22):4568-79. PubMed ID: 22587726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Unusual Fatty Acyl:Adenylate Ligase (FAAL)-Acyl Carrier Protein (ACP) Didomain in Ambruticin Biosynthesis.
    Hemmerling F; Lebe KE; Wunderlich J; Hahn F
    Chembiochem; 2018 May; 19(10):1006-1011. PubMed ID: 29517170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acyl carrier protein synthases from gram-negative, gram-positive, and atypical bacterial species: Biochemical and structural properties and physiological implications.
    McAllister KA; Peery RB; Zhao G
    J Bacteriol; 2006 Jul; 188(13):4737-48. PubMed ID: 16788183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Versatility of acyl-acyl carrier protein synthetases.
    Beld J; Finzel K; Burkart MD
    Chem Biol; 2014 Oct; 21(10):1293-1299. PubMed ID: 25308274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the thioesterification conformation of
    Chen Y; Li TL; Lin X; Li X; Li XD; Guo Z
    J Biol Chem; 2017 Jul; 292(29):12296-12310. PubMed ID: 28559280
    [No Abstract]   [Full Text] [Related]  

  • 17. Biochemical and structural characterization of germicidin synthase: analysis of a type III polyketide synthase that employs acyl-ACP as a starter unit donor.
    Chemler JA; Buchholz TJ; Geders TW; Akey DL; Rath CM; Chlipala GE; Smith JL; Sherman DH
    J Am Chem Soc; 2012 May; 134(17):7359-66. PubMed ID: 22480290
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis for the substrate specificity of quorum signal synthases.
    Dong SH; Frane ND; Christensen QH; Greenberg EP; Nagarajan R; Nair SK
    Proc Natl Acad Sci U S A; 2017 Aug; 114(34):9092-9097. PubMed ID: 28784791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acyl-coenzyme A:(holo-acyl carrier protein) transacylase enzymes as templates for engineering.
    Marcella AM; Barb AW
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6333-6341. PubMed ID: 29858956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal Structure and Substrate Specificity of Human Thioesterase 2: INSIGHTS INTO THE MOLECULAR BASIS FOR THE MODULATION OF FATTY ACID SYNTHASE.
    Ritchie MK; Johnson LC; Clodfelter JE; Pemble CW; Fulp BE; Furdui CM; Kridel SJ; Lowther WT
    J Biol Chem; 2016 Feb; 291(7):3520-30. PubMed ID: 26663084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.