These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 34490877)

  • 41. Identification of candidate genes controlling oil content by combination of genome-wide association and transcriptome analysis in the oilseed crop
    Xiao Z; Zhang C; Tang F; Yang B; Zhang L; Liu J; Huo Q; Wang S; Li S; Wei L; Du H; Qu C; Lu K; Li J; Li N
    Biotechnol Biofuels; 2019; 12():216. PubMed ID: 31528204
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents.
    Yang Q; Fan C; Guo Z; Qin J; Wu J; Li Q; Fu T; Zhou Y
    Theor Appl Genet; 2012 Aug; 125(4):715-29. PubMed ID: 22534790
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic control of oil content in oilseed rape (Brassica napus L.).
    Delourme R; Falentin C; Huteau V; Clouet V; Horvais R; Gandon B; Specel S; Hanneton L; Dheu JE; Deschamps M; Margale E; Vincourt P; Renard M
    Theor Appl Genet; 2006 Nov; 113(7):1331-45. PubMed ID: 16960716
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a.
    Wang N; Qian W; Suppanz I; Wei L; Mao B; Long Y; Meng J; Müller AE; Jung C
    J Exp Bot; 2011 Nov; 62(15):5641-58. PubMed ID: 21862478
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genome-wide haplotype analysis improves trait predictions in Brassica napus hybrids.
    Jan HU; Guan M; Yao M; Liu W; Wei D; Abbadi A; Zheng M; He X; Chen H; Guan C; Nichols RA; Snowdon RJ; Hua W; Qian L
    Plant Sci; 2019 Jun; 283():157-164. PubMed ID: 31128685
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Genome-wide association study reveals new genes involved in leaf trichome formation in polyploid oilseed rape (Brassica napus L.).
    Xuan L; Yan T; Lu L; Zhao X; Wu D; Hua S; Jiang L
    Plant Cell Environ; 2020 Mar; 43(3):675-691. PubMed ID: 31889328
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus.
    Yang M; Ding G; Shi L; Feng J; Xu F; Meng J
    Theor Appl Genet; 2010 Jun; 121(1):181-93. PubMed ID: 20217384
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Species-wide genome sequence and nucleotide polymorphisms from the model allopolyploid plant Brassica napus.
    Schmutzer T; Samans B; Dyrszka E; Ulpinnis C; Weise S; Stengel D; Colmsee C; Lespinasse D; Micic Z; Abel S; Duchscherer P; Breuer F; Abbadi A; Leckband G; Snowdon R; Scholz U
    Sci Data; 2015 Dec; 2():150072. PubMed ID: 26647166
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel and major QTL for branch angle detected by using DH population from an exotic introgression in rapeseed (Brassica napus L.).
    Shen Y; Yang Y; Xu E; Ge X; Xiang Y; Li Z
    Theor Appl Genet; 2018 Jan; 131(1):67-78. PubMed ID: 28942459
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus.
    Tang S; Zhao H; Lu S; Yu L; Zhang G; Zhang Y; Yang QY; Zhou Y; Wang X; Ma W; Xie W; Guo L
    Mol Plant; 2021 Mar; 14(3):470-487. PubMed ID: 33309900
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genetic dissection of the shoot and root ionomes of Brassica napus grown with contrasting phosphate supplies.
    Wang W; Ding G; White PJ; Wang M; Zou J; Xu F; Hammond JP; Shi L
    Ann Bot; 2020 Jun; 126(1):119-140. PubMed ID: 32221530
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetic variation in the glycine-rich protein gene BnGRP1 contributes to low phosphorus tolerance in Brassica napus.
    Xu P; Li H; Xu K; Cui X; Liu Z; Wang X
    J Exp Bot; 2023 Jun; 74(12):3531-3543. PubMed ID: 36964902
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome-Wide Association Study Provides Insight into the Genetic Control of Plant Height in Rapeseed (Brassica napus L.).
    Sun C; Wang B; Yan L; Hu K; Liu S; Zhou Y; Guan C; Zhang Z; Li J; Zhang J; Chen S; Wen J; Ma C; Tu J; Shen J; Fu T; Yi B
    Front Plant Sci; 2016; 7():1102. PubMed ID: 27512396
    [TBL] [Abstract][Full Text] [Related]  

  • 54. GWAS and co-expression network combination uncovers multigenes with close linkage effects on the oleic acid content accumulation in Brassica napus.
    Yao M; Guan M; Zhang Z; Zhang Q; Cui Y; Chen H; Liu W; Jan HU; Voss-Fels KP; Werner CR; He X; Liu Z; Guan C; Snowdon RJ; Hua W; Qian L
    BMC Genomics; 2020 Apr; 21(1):320. PubMed ID: 32326904
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome.
    Qian L; Qian W; Snowdon RJ
    BMC Genomics; 2014 Dec; 15(1):1170. PubMed ID: 25539568
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement.
    Lu K; Wei L; Li X; Wang Y; Wu J; Liu M; Zhang C; Chen Z; Xiao Z; Jian H; Cheng F; Zhang K; Du H; Cheng X; Qu C; Qian W; Liu L; Wang R; Zou Q; Ying J; Xu X; Mei J; Liang Y; Chai YR; Tang Z; Wan H; Ni Y; He Y; Lin N; Fan Y; Sun W; Li NN; Zhou G; Zheng H; Wang X; Paterson AH; Li J
    Nat Commun; 2019 Mar; 10(1):1154. PubMed ID: 30858362
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Characterization of Sucrose transporter alleles and their association with seed yield-related traits in Brassica napus L.
    Li F; Ma C; Wang X; Gao C; Zhang J; Wang Y; Cong N; Li X; Wen J; Yi B; Shen J; Tu J; Fu T
    BMC Plant Biol; 2011 Nov; 11():168. PubMed ID: 22112023
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regional association analysis delineates a sequenced chromosome region influencing antinutritive seed meal compounds in oilseed rape.
    Snowdon RJ; Wittkop B; Rezaidad A; Hasan M; Lipsa F; Stein A; Friedt W
    Genome; 2010 Nov; 53(11):917-28. PubMed ID: 21076507
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Homoeologous duplicated regions are involved in quantitative resistance of Brassica napus to stem canker.
    Fopa Fomeju B; Falentin C; Lassalle G; Manzanares-Dauleux MJ; Delourme R
    BMC Genomics; 2014 Jun; 15(1):498. PubMed ID: 24948032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mapping a major QTL responsible for dwarf architecture in Brassica napus using a single-nucleotide polymorphism marker approach.
    Wang Y; Chen W; Chu P; Wan S; Yang M; Wang M; Guan R
    BMC Plant Biol; 2016 Aug; 16(1):178. PubMed ID: 27538713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.