BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 34490929)

  • 1. Comparison of prospective and retrospective motion correction in 3D-encoded neuroanatomical MRI.
    Slipsager JM; Glimberg SL; Højgaard L; Paulsen RR; Wighton P; Tisdall MD; Jaimes C; Gagoski BA; Grant PE; van der Kouwe A; Olesen OV; Frost R
    Magn Reson Med; 2022 Feb; 87(2):629-645. PubMed ID: 34490929
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Markerless high-frequency prospective motion correction for neuroanatomical MRI.
    Frost R; Wighton P; Karahanoğlu FI; Robertson RL; Grant PE; Fischl B; Tisdall MD; van der Kouwe A
    Magn Reson Med; 2019 Jul; 82(1):126-144. PubMed ID: 30821010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combining prospective and retrospective motion correction based on a model for fast continuous motion.
    Hucker P; Dacko M; Zaitsev M
    Magn Reson Med; 2021 Sep; 86(3):1284-1298. PubMed ID: 33829538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.
    Todd N; Josephs O; Callaghan MF; Lutti A; Weiskopf N
    Neuroimage; 2015 Jun; 113():1-12. PubMed ID: 25783205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospective Motion Correction for Brain MRI Using an External Tracking System.
    Nael K; Pawha PS; Fleysher L; George K; Stueben J; Roas-Loeffler M; Delman BN; Fayad ZA
    J Neuroimaging; 2021 Jan; 31(1):57-61. PubMed ID: 33146946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative evaluation of prospective motion correction in healthy subjects at 7T MRI.
    Sciarra A; Mattern H; Yakupov R; Chatterjee S; Stucht D; Oeltze-Jafra S; Godenschweger F; Speck O
    Magn Reson Med; 2022 Feb; 87(2):646-657. PubMed ID: 34463376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse retrospective motion correction.
    Zahneisen B; Keating B; Singh A; Herbst M; Ernst T
    Magn Reson Med; 2016 Jun; 75(6):2341-9. PubMed ID: 26140504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is it time to switch your T1W sequence? Assessing the impact of prospective motion correction on the reliability and quality of structural imaging.
    Ai L; Craddock RC; Tottenham N; Dyke JP; Lim R; Colcombe S; Milham M; Franco AR
    Neuroimage; 2021 Feb; 226():117585. PubMed ID: 33248256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of prospective motion correction on perivascular spaces at 7T MRI evaluated using motion artifact simulation.
    Zhao B; Zhou Y; Zong X
    Magn Reson Med; 2024 Sep; 92(3):1079-1094. PubMed ID: 38651650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous multislice EPI prospective motion correction by real-time receiver phase correction and coil sensitivity map interpolation.
    Li B; Li N; Wang Z; Balan R; Ernst T
    Magn Reson Med; 2023 Nov; 90(5):1932-1948. PubMed ID: 37448116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution multi-shot diffusion-weighted MRI combining markerless prospective motion correction and locally low-rank constrained reconstruction.
    Chen H; Dai K; Zhong S; Zheng J; Zhang X; Yang S; Cao T; Wang C; Karasan E; Frydman L; Zhang Z
    Magn Reson Med; 2023 Feb; 89(2):605-619. PubMed ID: 36198013
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of prospective motion correction of high-resolution 3D-T2-FLAIR acquisitions in epilepsy patients.
    Vos SB; Micallef C; Barkhof F; Hill A; Winston GP; Ourselin S; Duncan JS
    J Neuroradiol; 2018 Oct; 45(6):368-373. PubMed ID: 29505841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effectiveness of navigator-based prospective motion correction in MPRAGE data acquired at 3T.
    Sarlls JE; Lalonde F; Rettmann D; Shankaranarayanan A; Roopchansingh V; Talagala SL
    PLoS One; 2018; 13(6):e0199372. PubMed ID: 29953459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prospective motion correction of fMRI: Improving the quality of resting state data affected by large head motion.
    Maziero D; Rondinoni C; Marins T; Stenger VA; Ernst T
    Neuroimage; 2020 May; 212():116594. PubMed ID: 32044436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust retrospective motion correction of head motion using navigator-based and markerless motion tracking techniques.
    Marchetto E; Murphy K; Glimberg SL; Gallichan D
    Magn Reson Med; 2023 Oct; 90(4):1297-1315. PubMed ID: 37183791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective motion correction improves high-resolution quantitative susceptibility mapping at 7T.
    Mattern H; Sciarra A; Lüsebrink F; Acosta-Cabronero J; Speck O
    Magn Reson Med; 2019 Mar; 81(3):1605-1619. PubMed ID: 30298692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of image-based and reconstruction-based respiratory motion correction for golden radial phase encoding coronary MR angiography.
    Paschke NK; Dössel O; Schaeffter T; Prieto C; Kolbitsch C
    J Magn Reson Imaging; 2015 Oct; 42(4):964-71. PubMed ID: 25639861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Abdominal DCE-MRI reconstruction with deformable motion correction for liver perfusion quantification.
    Johansson A; Balter JM; Cao Y
    Med Phys; 2018 Oct; 45(10):4529-4540. PubMed ID: 30098044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid motion estimation and correction using self-encoded FID navigators in 3D radial MRI.
    Wallace TE; Piccini D; Kober T; Warfield SK; Afacan O
    Magn Reson Med; 2024 Mar; 91(3):1057-1066. PubMed ID: 37929608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Retrospective correction of head motion using measurements from an electromagnetic tracker.
    Afacan O; Wallace TE; Warfield SK
    Magn Reson Med; 2020 Feb; 83(2):427-437. PubMed ID: 31400036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.